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ABSTRACT

Transport Layer Security (TLS) based malware is one of the most 
hazardous malware types, as it relies on encryption to conceal 
connections. Due to the complexity of TLS traffic decryption, several 
anomaly-based detection studies have been conducted to detect TLS-
based malware using different features and machine learning (ML) 
algorithms. However, most of these studies utilized flow features 
with no feature transformation or relied on inefficient flow feature 
transformations like frequency-based periodicity analysis and outlier 
percentage. This paper introduces TLSMalDetect, a TLS-based 
malware detection approach that integrates periodicity-independent 
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entropy-based flow set (EFS) features generated by a flow feature 
transformation technique to solve flow feature utilization issues in 
related research. The effectiveness of EFS features was evaluated 
in two ways: (1) by comparing them to the corresponding outlier 
percentage and flow features using four feature importance methods, 
and (2) by analyzing classification performance with and without EFS 
features. Moreover, new Transmission Control Protocol features not 
explored in the literature were incorporated into TLSMalDetect, and 
their contribution was assessed. This study’s results proved that EFS 
features of the number of packets sent and received were superior to 
the related outlier percentage and flow features and could remarkably 
increase the performance up to ~42 percent in the case of Support 
Vector Machine accuracy. Furthermore, using the basic features, 
TLSMalDetect achieved the highest accuracy of 93.69 percent 
by Naïve Bayes (NB) among the ML algorithms applied. From a 
comparison view, TLSMalDetect’s Random Forest precision of 98.99 
percent and NB recall of 92.91 percent exceeded the best relevant 
findings of previous studies. These comparative results demonstrated 
TLSMalDetect’s ability to detect more malware flows out of total 
malicious flows than existing works. It could also generate more 
actual alerts from overall alerts than earlier research.

Keywords: Malware detection, machine learning, TLS, entropy, 
flow features.

INTRODUCTION

With the growing usage of encryption to ensure users’ privacy, 
malware authors opt to embrace encryption protocols such as 
Transport Layer Security (TLS) and communication over Hypertext 
Transfer Protocol Secure (HTTPS) connections to hide malicious 
connections. According to Sophos Labs, roughly 44 percent (almost 
half) of information-stealing malware and 23 percent of all malware 
categories employ TLS while transmitting or receiving orders from 
Command and Control (C&C) servers, installing harmful payloads, or 
accessing data provided by that payload (Nagy, 2020). 

An Intrusion Detection System (IDS) is a network security system 
that scans for unusual behavior and warns users of malware. It is 
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installed either on the host side (Host Intrusion Detection System, 
HIDS) or the network (Network Intrusion Detection System, NIDS). 
An IDS may also be classified into two types: signature-based, which 
utilizes databases with known attack patterns, and anomaly-based, 
which identifies unexpected abnormal behavior by comparing it to the 
network’s regular activity. However, signature-based NIDS cannot 
detect TLS-based malware due to the unavailability of clear-text 
metadata and the complexity of traffic decryption. As a result, NIDS 
research has been shifted to anomaly-based detection that does not 
require decryption.

In the research area of TLS-based malware anomaly detection in a 
network, several feature types have been used, such as flow (e.g., the 
number of packets or bytes, duration), packet, TLS handshake, and 
contextual Hypertext Transfer Protocol (HTTP) and Domain Name 
System (DNS). The features are extracted from traffic, pre-processed, 
and passed into detection techniques such as machine learning (ML). 
Nevertheless, involving certain flow features, such as the number of 
packets sent/received or duration, could be inefficient in malware 
anomaly behavior classification (Anderson et al., 2018; Jenseg, 2019; 
Liu et al., 2019; Maroušek, 2017; Roques et al., 2019). The explanation 
for this is that the range of feature values in the malicious traffic could 
vary over time (in the same malware capture or different malware 
captures), making it impossible to predict or classify. For instance, 
supposing the number of packets sent of several flows are: {1, 1, 7, 7, 
10, 10, 10, 1, 4, 11, 11, 20, 20}, the abnormal behavior (regularity) is 
seen; however, the value ranges vary, making classification prediction 
unfeasible. With this issue, the classification model learns less 
important or uninformative (irrelevant) flow features and takes longer 
to train.

Feature engineering addresses this challenge with domain knowledge. 
One of the feature engineering processes is feature transformation, by 
which new features are evolved from existing ones through arithmetic 
and aggregation operations. Using feature transformation on flow 
features in sets (groups) can provide additional features capable of 
exposing anomalous behavior. Nevertheless, only a few feature 
transformation methods have been used in related works to tackle the 
range change of flow feature value with various drawbacks.

One method is to apply frequency-based analysis like Fourier 
(converting from a time domain to a frequency domain) to discover 
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the periodicity of a flow set feature (Fehrman et al., 2020). The 
higher the frequency, the more likely the malware exists. Although 
this method often works, malware can show a non-periodically 
continuous anomaly pattern, rendering ML detection ineffective 
based on frequency.

Another method uses statistics to distinguish outliers in feature values, 
avoiding the limitations of periodicity assumption. By calculating 
standard deviation and mean, the percentage of all values out of range 
of mean+ standard deviation and mean – standard deviation (outliers) 
can be discovered (Dai et al., 2019; Strasák, 2017). The differences 
in percentages can distinguish the traffic, whether it is malicious or 
benign. Nevertheless, this methodology has a disadvantage because 
malware can have the same outlier percentage as normal traffic but 
with different anomaly value distributions. Furthermore, outlier 
values substantially impact the mean and standard deviation (very 
small/large values can reduce/increase the standard deviation), and 
outliers are uncommon in small samples.

This paper aims to address the above-highlighted related works’ 
weaknesses and boost the detection performance by proposing 
TLSMalDetect, a TLS-based malware detection approach based on ML 
classification. TLSMalDetect uses an entropy-based flow set feature 
transformation technique to generate periodicity-independent features 
named entropy-based flow set (EFS) features. EFS features’ efficiency 
is assessed by examining their effect on classification performance 
and comparing them to the related works’ corresponding outlier-
based and flow features using different feature importance methods. 
The study also evaluates new Transmission Control Protocol (TCP) 
features not explored in the literature based on feature importance. 
Moreover, it tests TLSMalDetect’s detection performance using seven 
ML classification algorithms and selects the best accuracy achieving 
algorithm. Finally, TLSMalDetect performance is compared to two 
similar studies based on the best precision and recall.

The rest of the paper is organized as follows. The second section 
presents a review of the related works. The proposed TLSMalDetect 
approach is described in the third section. The fourth section presents 
the results and discussion, followed by the final section that concludes 
the research and offers future work recommendations.
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RELATED WORKS

Since TLS-based malware detection based on signature violates users’ 
privacy and requires expensive computation, NIDS researchers have 
focused on anomaly-based detection using ML. As a result, various 
features such as TLS, TCP, contextual DNS and HTTP, flow, and 
packet features have been extracted from the traffic to create reliable 
detection systems.

TLS is a cryptographic protocol that offers privacy and integrity 
between a client and a server and is mainly used with HTTP. Before a 
TLS connection is formed between two parties, handshake messages 
are conveyed carrying clear-text metadata from which features can 
be retrieved. Client hello, a client-side TLS handshake message, was 
used in the early detection because it is the first message sent (Liu et 
al., 2019). It also contains numerous metadata fields like ciphersuites, 
extensions, compression techniques, and client version. Most of the 
literature have utilized ciphersuites as they are a good differentiator 
between malware and benign traffic (Anderson et al., 2018; Anderson 
& McGrew, 2016; 2017; Calderon et al., 2018; Liu et al., 2019; 
Roques et al., 2019; Senecal et al., 2019). Client hello extensions are 
also essential, like Server Name Indication (SNI) extension. Using the 
CTU-13 Stratosphere dataset, Bazuhair and Lee (2020) examined the 
SNI value if it is an Internet Protocol (IP) address and included that as 
a feature in their approach based on Perlin noise with Convolutional 
Neural Network (CNN). They also employed Naïve Bayes (NB) 
in the performance result comparison. Nevertheless, other studies 
focused on TLS handshake server messages, especially certificate 
features (Kato et al., 2019; Torroledo et al., 2018). Kato et al. (2019) 
conducted a study on android TLS malware detection, achieving 
Random Forest (RF) accuracy of 93.90 percent by merging the 
TLS certificate features of the new scheme with the old scheme and 
simple DP-based scheme (SDPBS). As demonstrated, TLS features 
are essential in the detection; therefore, they are utilized with other 
features in this paper’s approach, TLSMalDetect.

Besides TLS, TLS-based malware also uses firewall port-opened 
application protocols such as HTTP and DNS to assist in the attacks, 
like Qbot malware (Malware-Traffic-Analysis.Net - Qbot (Qakbot) 
Infection, 2020). Different contextual HTTP and DNS features are 
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used in two types: statistical-based like the number of IPs in a DNS 
request, or string-based such as HTTP content-type (Anderson & 
McGrew, 2016; Calderon et al., 2018; Senecal et al., 2019).

In addition, researchers have used other Transmission Control 
Protocol/Internet Protocol (TCP/IP) stack protocols that function 
under the TLS protocol layer, such as TCP and IP. For example, 
Anderson et al. (2019) integrated TCP packet length and TCP Push 
flag features in a framework for HTTPS/TLS malware detection 
that applies two ML classifiers. Strasák (2017) divided 13 TCP 
connection states into two groups: established and not established, 
and then calculated the “Ratio of Established States of Connection” 
feature. Furthermore, Anderson and McGrew (2017) used packet 
features in two feature sets: Standard, which only has packet features, 
and Enhanced, which has packet features and TLS features. Among 
all other RF accuracies in the literature, they attained the highest 
accuracy rate of 99.99 percent using the Enhanced set. Packet features 
were further processed using the Markov chain (binning) to provide 
additional vector features known as the sequence of packet lengths/
times (SPL/T) (Jenseg, 2019; Zheng et al., 2020).

Moreover, a majority of the existing works have included network 
flow features in their approach feature sets. Table 1 shows several flow 
features used and ways for extracting them. Some researchers used 
flow features without grouping flows into sets. For example, Anderson 
et al. (2018) extracted flow features (metadata) using the software 
they wrote. Then, by applying l1-logistic regression, the researchers 
compared the findings of three feature type groups, including flow 
features, and obtained an excellent overall accuracy of 99.6 percent. 
In contrast, other researchers grouped flows into sets and utilized flow 
set features. For instance, Dai et al. (2019) and Strasák (2017) used 
the flow set (or connection, as they called it) features, such as the total 
of the duration, number of packets, and bytes. 

However, using flow or flow set features is not always effective in ML 
classification since the range of feature values might vary over time 
and become unclassified. As a result, feature transformation of flow 
features within a set is required to reveal the set’s malicious behavior. 
Table 1 also summarizes the flow feature transformation methods 
employed in the research works and the consequent weaknesses.
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Table 1

A Comparison of Flow Feature Usage in Related Works

Study

N
um

ber of flow
 features

D
uration

In/O
ut bytes

In/O
ut packets num

ber

Inter-A
rrival Tim

e (IAT)

Src/D
st ports

Starting tim
e of flow

Includes features of the 
w

hole flow
 set?

Flow
 feature transform

ation 
applied Weaknesses

Bazuhair and 
Lee (2020) 5 - - Yes Nil

Flow 
feature 
values 

may not be 
classifiable

Dai et al. 
(2019) 6 - - Yes Outlier 

percentage

Normal and 
malware 
outlier 

percentages 
can be the 

same

Strasák 
(2017) 6 - - Yes Outlier 

percentage

Normal and 
malware 
outlier 

percentages 
can be the 

same

Anderson et al. 
(2018) 4 - - No Nil

Flow 
feature 
values 

may not be 
classifiable

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 
N

um
ber of flow

 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 
N

um
ber of flow

 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

(continued)



286        

Journal of ICT, 21, No. 3 (July) 2022, pp: 279–313

Study

N
um

ber of flow
 features

D
uration

In/O
ut bytes

In/O
ut packets num

ber

Inter-A
rrival Tim

e (IAT)

Src/D
st ports

Starting tim
e of flow

Includes features of the 
w

hole flow
 set?

Flow
 feature transform

ation 
applied Weaknesses

Liu et al. 
(2019) 3 - - - No Nil

Flow 
feature 
values 

may not be 
classifiable

Anderson et 
al. (2019) 2 - - - - No Nil

Flow 
feature 
values 

may not be 
classifiable

Fehrman et al. 
(2020) 3 - - - - No

Fourier 
Analysis

(periodicity)

It does not 
work if the 
malware 

flow feature 
is not 

periodic

Roques et al. 
(2019) 5 - - No Nil

Flow 
feature 
values 

may not be 
classifiable

Jenseg 
(2019) 3 - - - No Nil

Flow 
feature 
values 

may not be 
classifiable

Maroušek 
(2017) 3 - - - No Nil

Flow 
feature 
values 

may not be 
classifiable

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 
N

um
ber of flow

 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 
N

um
ber of flow

 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

5 

 

Study 

N
um

ber of flow
 features 

D
uration 

In/O
ut bytes 

In/O
ut packets num

ber 

Inter-A
rrival Tim

e (IA
T) 

Src/D
st ports 

Starting tim
e of flow

 

Includes features of the 
w

hole flow
 set? 

Flow
 feature 

transform
ation applied 

Weaknesses 

Bazuhair and 
Lee (2020) 

5     - - Yes Nil 

Flow feature 
values may 

not be 
classifiable 

Dai et al. 
(2019) 

6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Strasák (2017) 6     - - Yes Outlier 
percentage 

Normal and 
malware 
outlier 

percentages 
can be the 

same 

Anderson et al. 
(2018) 

4    -  - No Nil 

Flow feature 
values may 

not be 
classifiable 

Liu et al. 
(2019) 3    - - - No Nil 

Flow feature 
values may 

not be 
classifiable 

Anderson et al. 
(2019) 2 -   - - - No Nil 

Flow feature 
values may 

not be 
classifiable 



    287      

Journal of ICT, 21, No. 3 (July) 2022, pp: 279–313

Some existing research works applied two flow feature transformation 
methods: Fourier frequency analysis and outlier percentage. Fehrman 
et al. (2020) applied the first method in their system, which did not 
rely on ML. They detected TLS-based malware beacons by getting 
the frequency using Fourier transformation on flow set features and 
calculating the number of server TLS certificates. The higher the 
frequency, the more likely the malware exists, and the fewer servers, 
the less chance of malicious connection existence. Nevertheless, the 
research is limited since TLS-based malware may not exhibit periodic 
anomaly behavior. Dai et al. (2019) proposed a detection method 
based on multi-view features, including flow statistics, and compared 
it with Strasák’s (2017) work based on feature engineering. As in 
Strasák’s (2017) study, Dai et al. (2019) calculated the percentage of 
all values out of the Mean+/-StandardDeviation; the normal traffic 
usually has a higher percentage than the malware one. The percentage 
is then used as a new feature in ML. Unfortunately, this approach 
is limited as the malware distribution of feature values may imitate 
the benign one, and outlier values substantially impact the mean and 
standard deviation.

In summary, different features were utilized in the related works of 
TLS-based malware anomaly-based detection. These features were 
extracted from TLS, contextual DNS and HTTP, TCP, packet, and 
flow. However, as seen in Table 1, most related works had drawbacks in 
using flow features with no feature transformation or using inefficient 
transformation methods such as outlier-based and frequency analysis 
features. Besides, only one related study by Bazuhair and Lee (2020) 
applied NB for ML results comparison using features taken from the 
CTU-13 dataset. Therefore, this paper proposes a TLSMalDetect 
approach to address the previous weaknesses by using periodicity-
independent EFS features created from a flow feature transformation 
technique. Furthermore, the approach includes NB as one of several 
algorithms to test its performance.

THE PROPOSED TLSMALDETECT APPROACH

This section explores the proposed TLSMalDetect approach, which 
efficiently detects TLS-based malware by adding EFS features. 
TLSMalDetect has three phases: 1) data collection; 2) feature 
processing; and 3) machine learning. Figure 1 depicts the overall 
TLSMalDetect structure.
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Figure 1

The Proposed TLSMalDetect Approach

Phase 1: Data Collection

Traffic captures from public sources were collected in packet capture 
(PCAP) format. Both malicious and benign traffic types were needed 
to train the ML model in Phase 3.

Phase 2: Feature Processing

In this phase, the PCAP files were processed and prepared for the 
input of Phase 3. The sub-phases are explained as follows:

1)	 Metadata Generation

PCAP files contain raw traffic data that must be processed further to 
obtain useful features. Therefore, each PCAP file was parsed into a 
metadata file using the Tranalyzer open-source software (Tranalyzer - 
About, n.d.). The metadata file comprised many unidirectional flows; 
each had several features, like packets and bytes, TCP stream, TLS 
handshake, etc.
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2)	 Flow set Feature Generation

Each metadata file was read in this sub-phase, and a new one with 
additional flow set features was created through four steps, as illustrated 
in Figure 2. First, each metadata file was split into multiple sets. 
According to Albright (2021) from Databox, the average user session 
duration is 2–3 minutes. After examining many traffic captures, the 
study found that 300 flows usually form at least a 3-minute session. 
Therefore, a flow set was chosen to have 300 unidirectional flows. 
If a PCAP had less than 300 flows, all flows were taken. It is worth 
emphasizing that flows were divided based on count rather than 
destination IP since malware may connect with several server IPs, 
causing anomalous flow behavior through all of them.

Figure 2

Flow Set Features Generation Steps

Second, the duration and the number of packets sent and received for 
each flow set were transformed, generating new additional features. 
The feature transformation methods applied are:

(i)	Entropy

	 As malware is an automated program, it usually exhibits 
regularity for some features, while benign software shows 
randomness. This behavior difference was captured using the 
entropy in Equation 1 given.

8 

 

sets. According to Albright (2021) from Databox, the average user session duration is 2–3 minutes. 
After examining many traffic captures, the study found that 300 flows usually form at least a 3-minute 
session. Therefore, a flow set was chosen to have 300 unidirectional flows. If a PCAP had less than 300 
flows, all flows were taken. It is worth emphasizing that flows were divided based on count rather than 
destination IP since malware may connect with several server IPs, causing anomalous flow behavior 
through all of them. 
 
Figure 2 

 
Flow Set Features Generation Steps 
 

 
 

Second, the duration and the number of packets sent and received for each flow set were transformed, 
generating new additional features. The feature transformation methods applied are: 
 

(i) Entropy 
 
As malware is an automated program, it usually exhibits regularity for some features, while 
benign software shows randomness. This behavior difference was captured using the entropy 
in Equation 1 given. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝐶𝐶 ) =  − ∑ 𝑝𝑝(𝑐𝑐𝑖𝑖)
𝑛𝑛

𝑖𝑖=1
log ( 𝑝𝑝(𝑐𝑐𝑖𝑖) ) (1) 

Where C = { 𝑐𝑐1, 𝑐𝑐2, ... 𝑐𝑐𝑖𝑖} and 𝑐𝑐𝑖𝑖 represents the duration or number of packets sent/received for 
each flow in a flow set, n is the number of the unique values, and 𝑝𝑝(𝑐𝑐𝑖𝑖) indicates the probability 
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(1)

	 Where C =                         and        represents the duration or number 
of packets sent/received for each flow in a flow set, n is the 
number of the unique values, and          indicates the probability 
of each value     For the duration, the numbers were rounded to 
have two digits after the decimal point.

	 Applying entropy has several advantages: (1) It is periodicity 
independent; as the equation indicates, it just needs a 
probability of each value. Therefore, it can differentiate the 
anomaly behavior (regularity) of malware values even if 
they are nonperiodic. (2) It is independent of the distribution 
of values, meaning that it can discover malicious regularity 
even though both malware and benign have the same value 
distribution (e.g., Gaussian) with the same number of outliers 
(outside Mean+/-Standard Deviation).

 
(ii)	Outliers

	 This existing work method was used to be compared with 
entropy features. It works by calculating the proportion of 
values outside the range (Mean+/-Standard Deviation).

Third, the resulting entropy values (EFS) and the outlier percentages 
were added as six extra flow set features to each flow to indicate 
the behavior of the contained flow set. Finally, Steps 2 and 3 were 
repeated for each flow set. When there were no more flow sets to take, 
the flow sets were merged in one new metadata file, including the 
extra EFS and outlier percentage features, and then the file was stored.

3)	 Merging New PCAP Metadata Files
The previous Sub-phases (1) and (2) were repeated for each PCAP 
file. Then, all PCAP metadata files produced were merged in sequence 
in one master metadata file. 

4)	 Specifying the Feature Set and Cleansing Data
The master metadata file contained many irrelevant features outside 
the scope of this study. These features were removed in this sub-
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phase, and other features were kept, which are listed in Table 2. The 
literature’s most common TLS, TCP, and flow features were selected 
besides the created EFS and outlier percentage features. Additionally, 
TCP features that have not been utilized in related studies were 
included.
 
After that, flows with missing feature values were removed to improve 
classification accuracy while minimizing the cost of dealing with a 
large metadata file. Following malware and benign flow filtration, the 
malware flows reduced to 328 flows. The remaining 328 flows were 
added from another malware capture of Trickbot to balance the two 
classes and reduce the ML prediction bias. The final number of flows 
for each class (malware and benign) was 139,560.

Table 2

The Selected Feature Sets

Feature 
Type Data Type Feature

Flow Numeric The number of input packets and output packets

Flow Numeric The flow duration (seconds)

Flow set Numeric The entropy of the number of input packets and 
output packets (EFS)

Flow set Numeric The entropy of flow duration (EFS)

Flow set Numeric The outlier percentage of the number of input 
packets and output packets

Flow set Numeric The outlier percentage of flow duration
Flow Numeric The number of input bytes and output bytes

Flow Numeric The min, max, average, and standard deviation of 
layer 3 packet size

Flow Numeric The min, max, average, and standard deviation of 
layer 3 packet IAT

Flow Numeric Sent packets/bytes per second
TCP Numeric TCP packet sequence count and ACK count
TCP Numeric TCP sent sequence bytes
TCP Numeric The fault number of TCP sequence and ACK
TCP Numeric TCP flawless ACK received bytes (new)

(continued)
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Feature 
Type Data Type Feature

TCP Numeric TCP effective window size change down count 
and up count (new)

TCP Numeric TCP effective window size direction change 
count (new)

TCP Numeric TCP packet count ratio below window size 
WINMIN threshold (new)

TCP Value List
TCP flags (FIN/SYN/PSH/ACK/URG/ECN-
Echo/CWR)

TCP Value List

TCP Anomaly states (new) (FIN-ACK/ SYN-
ACK/ RST-ACK/ SYN-FIN/SYN-FIN-RST/ 
FIN-RST/Null/XMas flags, L4 option field 
corrupt, SYN retransmission, Sequence Number 
retry/out of order/jump forward, ACK number 
out of order, Duplicate ACK)

TCP Numeric The number of TCP option packets in a flow 
(new)

TCP Numeric The count of TCP options a flow has (new)
TLS Numeric SSL (TLS) version

TLS Numeric The number of client extensions, EC points, and 
EC point formats

TLS Value List The list of client extensions and client EC points
TLS Numeric The number of protocols
TLS Numeric The number of supported client ciphers
TLS Value List The list of supported client cipher

TLS Value List The number of change_cipher, alert, handshake, 
application data, and heartbeat records

5)	 Categorical Variables Processing and Feature Scaling
 
Features that had a list of values, like the client extensions, were split 
by the semicolon “;” or “_”, and then were binary encoded in new 
columns (features), as shown in Figure ‎3. Furthermore, SSL version 
feature values were encoded by the one-hot-encoding method. The 
total number of features was 272. Finally, all feature values were 
scaled (normalized) into a fixed range between 0 and 1.
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Figure 3

Binary Encoding of Value List Features

6) 	 Labeling the Final Data

Flows were tagged or labeled with either malware (number 1) or 
normal flow (number 0). This procedure was essential for the ML 
phase.

Phase 3: Machine Learning

In this phase, the total number of features (272) of the labeled master 
metadata file was reduced to 136 due to the experiment’s resource 
limitations. The 136 basic features were the top features obtained 
using RF feature selection with 10-fold cross-validation (CV) as the 
RF algorithm has shown promising results in the literature. Moreover, 
for a proper result comparison with Jenseg’s (2019) study, the same 
number of features used in that study, the top 23, were identified using 
the coefficient-based method, i.e., LR regularization L1.

After that, each feature of the 136 basic features was assigned 
importance values using four methods: 1) Mutual Information (MI) 
- Filter method; 2) Logistic Regression (LR) regularization with 
penalty L1 - Embedded method; 3) RF - Embedded method; and 4) 
XGBoost - Embedded method. Then, based on the feature importance 
values, EFS, outlier percentage, and flow features were compared to 
know the most superior features. The newly presented TCP features 
were also assessed based on feature importance. In the case of RF and 
XGboost methods, 10-fold CV was used, and the average of feature 
importance values for all folds was calculated to avoid bias.

Furthermore, different ML algorithms were applied to assess the 
TLSMalDetect detection performance and examine the effect of 
including and excluding EFS features on that performance. The 
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LR accuracy of 99.6 percent using a total of ~500K flows and 10-fold CV. This indicated ~50K flows 
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algorithms were LR, NB, RF, K-Nearest Neighbor (KNN), Support 
Vector Machine (SVM), Decision Tree (DT), and XGBoost. The best 
performing ML algorithm for TLSMalDetect was also determined 
based on accuracy metric as the two dataset classes (malware and 
benign) were balanced. Moreover, for accurate results without bias, 
a 5-fold CV was applied to obtain the following metrics: F1-score, 
accuracy, recall, precision, and AUC. The reason for choosing 5-fold 
is that Anderson et al. (2018) obtained an excellent LR accuracy 
of 99.6 percent using a total of ~500K flows and 10-fold CV. This 
indicated ~50K flows per fold. For this paper’s experiment, out of 
279,120 total flows, a 5-fold CV would provide ~50K flows per fold.

EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the results of the EFS features and TLSMalDetect 
assessments. It also statistically explores the malware families in the 
dataset and the contrasts between the malware and benign feature 
values to understand their ground truth.

Datasets

Two public sources were used to collect the experiment dataset: CIC-
IDS2017 and Stratosphere IPS - Malware Capture Facility Project 
(MCFP) (from years: 2013, 2016–2018, 2020, 2021) (IDS 2017 | 
Canadian Institute for Cybersecurity | UNB, n.d.; MCFP Dataset ( 
Malware Capture Facility Project - CTU University ), n.d.). The total 
benign and malicious unidirectional flows collected were 1,552,221 
and 10,919,379, accordingly. It was assumed that the malware flows 
contained a few portions of benign traffic generated by operating 
system requests. However, these portions do not simulate human 
behavior. 

The malware flows contained 28 families illustrated in Figure 
‎4, according to MCFP Stratosphere IPS project categorization. 
Two malware executables, which formed 94,701 flows, were from 
unknown families, and they were found to access the malicious 
websites http://node.viaxmr.com/ and http://5.8.88.175/. As shown in 
Figure ‎4, the most common malware family was Sality. This type of 
malware infects Windows operating systems and can communicate 
through encrypted peer-to-peer networks, creating a botnet.
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Figure 4

Malware Families

Contrast between Malware and Benign Feature Values 

The selection of features must be inspired by evident feature value 
differences between malware and benign flows. Consequently, 
certain features in the labeled master metadata file from Phase 2 were 
displayed in figures.

1)	 EFS and Outliers Percent 

Figures 5 and 6 display EFS and outlier percentage of the number 
of packets received (numPktsRcvd) and sent (numPktsSnt). As 
seen in these figures, the malware entropy values were often low as 
compared to the benign values, indicating the regularity of malware. 
Furthermore, most of the benign (green) portion in EFS figures 
was more considerable and purer than the benign (green) portion in 
outlier percentage figures. Therefore, numPktsRcvd and numPktsSnt 
EFS features seemed better than the matching outlier percentage at 
differentiating malware.
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Figure 5

Differences in Outlier Percentage and EFS of the Number of Packets 
Sent
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Figure 6 
 
Differences in Outlier Percentage and EFS of the Number of Packets Received 
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Figure 6

Differences in Outlier Percentage and EFS of the Number of Packets 
Received

2)	 TLS 

Figures ‎7 and 8 illustrate the distinctions between malware and benign 
ciphersuites and extensions of the TLS client hello message (some 
values were excluded for graph clarity). As seen in Figure 7, nearly 
all malware flows offered a few extensions (2 or 3), while almost 

14 

 

 
 

2) TLS  
 
Figures 7 and 8 illustrate the distinctions between malware and benign ciphersuites and extensions of 
the TLS client hello message (some values were excluded for graph clarity). As seen in Figure 7, nearly 
all malware flows offered a few extensions (2 or 3), while almost all benign flows offered more (9 or 
10). Additionally, more than 77 percent of malware flows had 12 ciphersuites offered, and more than 
60 percent of benign flows had 15 ciphersuites offered. These results were consistent with those of 
Jenseg (2019) but differed in the number of flows. 
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 Differences in the Number of Client-Offered Ciphersuites and Extensions 
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all benign flows offered more (9 or 10). Additionally, more than 77 
percent of malware flows had 12 ciphersuites offered, and more than 
60 percent of benign flows had 15 ciphersuites offered. These results 
were consistent with those of Jenseg (2019) but differed in the number 
of flows.

Figure 7

Differences in the Number of Client-Offered Ciphersuites and 
Extensions
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Figure 8

Differences in Client-Offered Ciphersuites and Extensions

As shown in Figure 8, ~90 percent of malware flows provided the 
extensions 0x000a (supported groups - elliptic curves) and 0x000b 
(EC point formats). Nevertheless, these extensions were not good 
distinguishers of malware because the normal flows offered them at 
almost the same frequency. On the other hand, around 100 percent 
of benign flows advertised 0xff01 (renegotiation_info), 0x0023 
(session ticket), and 0x0000 (server name) extensions. Consistent 
with the studies by Anderson et al. (2018) and Roques et al. (2019), 
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When investigating the advertised ciphersuites, the distinction between malware and benign flows 
became more apparent. As seen in the ciphersuites part of Figure 8, four ciphersuites perfectly 
distinguished flows, three for malware and one for benign flows. Interestingly, these four ciphersuites 
were all considered weak, according to Rudolph and Grundmann (n.d.). The four ciphersuites were as 
follows: 
 

• 0x0035 (advertised by ~100% of malware flows and ≤ 3% of benign flows). 
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some extensions were seen in 70 percent or more of the benign flows 
and rarely seen in the malware flows. These extensions were 0x0005 
(Status request), 0x0010 (ALPN), 0x0017 (Extended master secret 
type), 0xff01(renegotiation_info).

When investigating the advertised ciphersuites, the distinction between 
malware and benign flows became more apparent. As seen in the 
ciphersuites part of Figure 8, four ciphersuites perfectly distinguished 
flows, three for malware and one for benign flows. Interestingly, these 
four ciphersuites were all considered weak, according to Rudolph and 
Grundmann (n.d.). The four ciphersuites were as follows:

•	 0x0035 (advertised by ~100% of malware flows and ≤ 3% of 
benign flows).

•	 0x0038 (advertised by ~86% of malware flows and ≤ 3% of 
benign flows).

•	 0xc00a (advertised by ~92% of malware flows and ≤ 3% of 
benign flows).

•	 0x009f (advertised by ~100% of benign flows and ≤ 3% of 
malware flows).

The description of the hex code of ciphersuites can be found on the 
IANA website (Transport Layer Security (TLS) Parameters, n.d.).

3)	 TCP

Figure 9 presents the variances between malware and benign traffic 
relevant to TCP anomaly states. As shown in the figure, the malware 
solely sent SYN-ACK flag (the benign flows had zero SYN-ACK 
flags) and sent more of RST-ACK flag than the benign applications. 
One possible explanation for the malware’s only usage of the SYN-
ACK flag is that the malware operated as a TCP server receiving 
connection (with SYN flag) from the attackers or, in the case of 
botnets, from other malware peers. Another explanation is that the 
malware sent SYN-ACK packets in response to modified SYNs sent 
by the C&C server to exhaust another victim device (Seaman, 2019). 
The other observation of the increase in RST-ACK flag could be 
attributed to RST attacks such as RST hijacking to reset the victim’s 
session or RST flood/DDoS.
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Figure 9

Differences in TCP Anomaly Features

Feature Importance and EFS Features Superiority

The feature importance values for the top 50 features using MI are 
depicted in Figure ‎10. The EFS features (in red) were the top three, 
exceeding the corresponding outlier percentage (in purple) and flow 
features (in green). The numPktsSntOutliersPercent feature was not 
shown in the top 50 features figure as it was less significant.
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Figure 10

Top 50 Features using Mutual Information – Filter Method
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When the LR regularization feature importance method was used, the superiority of EFS over the 
matching outlier percentage and flow features was further proven. Figure 11 illustrates the top 40 
features obtained by applying that method. The feature importance values were the coefficients of the 
LR model; the closer to 0 the value is, the less important it is. As shown in the figure, all EFS features 
(in red) were superior to the matching outlier percentage (in purple) and flow features (not even in the 
top 40), excluding one EFS feature, durationEntropy. However, durationEntropy immediately followed 
durationOutliersPercent in the absolute value order of the coefficients, and it outranked the duration 
flow feature. 
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When the LR regularization feature importance method was used, 
the superiority of EFS over the matching outlier percentage and flow 
features was further proven. Figure 11 illustrates the top 40 features 
obtained by applying that method. The feature importance values 
were the coefficients of the LR model; the closer to 0 the value is, 
the less important it is. As shown in the figure, all EFS features (in 
red) were superior to the matching outlier percentage (in purple) and 
flow features (not even in the top 40), excluding one EFS feature, 
durationEntropy. However, durationEntropy immediately followed 
durationOutliersPercent in the absolute value order of the coefficients, 
and it outranked the duration flow feature.

Figure 11

Top 40 Features using LR Regularization with Penalty L1 – Embedded 
Method

For more certainty, two additional tree-based embedded feature 
importance techniques were used with 10-fold CV to prevent bias: 
RF and XGboost. Figure ‎12 displays the sorted list of the average of 
the 10-fold feature importance values for EFS, outlier percentage, and 
flow features. Once more, the EFS features (in red) outperformed the 
matching outlier percentage (in purple) and flow features (in green) 
apart from durationEntropy, which was even lower than the duration 
flow feature using XGboost.
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For more certainty, two additional tree-based embedded feature importance techniques were used with 
10-fold CV to prevent bias: RF and XGboost. Figure 12 displays the sorted list of the average of the 
10-fold feature importance values for EFS, outlier percentage, and flow features. Once more, the EFS 
features (in red) outperformed the matching outlier percentage (in purple) and flow features (in green) 
apart from durationEntropy, which was even lower than the duration flow feature using XGboost. 
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 The Average Feature Importance using RF and XGBoost with 10-fold CV 
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Figure 12

The Average Feature Importance using RF and XGBoost with 10-fold 
CV

Based on the above findings, it can be inferred that the EFS of 
flow duration is not a very powerful feature as compared to outlier 
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were taken precisely (two digits after the decimal point); therefore, the entropy did not distinguish well. 
However, the two EFS features of numPktsRcvd and numPktsSnt contributed more to TLS-based 
malware detection than the corresponding outlier percentage and flow features. They are superior to the 
matching outlier percentage because they can expose regularity in malware flow features without 
depending on value distribution and are more efficient than flow features as they can discover behavior 
regularity. 
 
Interestingly, further analysis of Figures 10 and 11 revealed that the top 40 features encompassed TLS, 
TCP, and flow features. As a result, it may be advised that all these feature types should be utilized to 
identify TLS-based malware and should not be ignored. It is also worth noting that some of the newly 
presented TCP features confirmed their excellent capability to distinguish malware, as seen by their 
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percentage and flow features. It could be because the duration values 
were taken precisely (two digits after the decimal point); therefore, 
the entropy did not distinguish well. However, the two EFS features 
of numPktsRcvd and numPktsSnt contributed more to TLS-based 
malware detection than the corresponding outlier percentage and flow 
features. They are superior to the matching outlier percentage because 
they can expose regularity in malware flow features without depending 
on value distribution and are more efficient than flow features as they 
can discover behavior regularity.

Interestingly, further analysis of Figures 10 and ‎11 revealed that 
the top 40 features encompassed TLS, TCP, and flow features. As 
a result, it may be advised that all these feature types should be 
utilized to identify TLS-based malware and should not be ignored. It 
is also worth noting that some of the newly presented TCP features 
confirmed their excellent capability to distinguish malware, as seen 
by their presence in the top features. TCP flawless ACK received 
bytes (tcpFlwLssAckRcvdBytes, ranked 6 by MI) and TCP Anomaly 
state SYN-ACK flag (tcpAnomaly_1_2, ranked 13 by LR) are two 
examples of these features.

Furthermore, the findings of the MI and LR feature importance 
methods could provide more information about the TLS features 
that have been infrequently employed in the literature, as found in 
the review study by Keshkeh et al. (2021). For example, the Elliptic 
Curve Group Number (sslNumECPt) and Ciphersuites Number 
(sslNumCipher) were shown to be essential for detection, with the 
former ranking 5 (LR) and the last ranking 8 (MI).

Effect of EFS Features on Performance

The two EFS features of numPktsRcvd and numPktsSnt were 
demonstrated to be the most significant. Therefore, they were selected 
to analyze the EFS features’ impact on classification performance. 
One experiment was to apply classification algorithms using the top 
23 features in two scenarios: including and excluding the two EFS 
features. Figure 13 compares F1, accuracy, precision, and AUC results 
for each algorithm and scenario. It was shown that adding the two 
EFS features improved all selected metrics, except for the minimal 
decrease in XGboost precision by ~0.14 percent. Furthermore, the 
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performance improvement was more apparent in SVM (~42% higher 
accuracy) and DT (~1.5% higher accuracy).

Figure 13

Classification Performance of the Top 23 Features with and without 
EFS of numPktsSnt and Rcvd

Another experiment used the 136 basic features to analyze the effect 
of the two EFS features. Three feature lists were used: 134 basic 
features were obtained by removing the two EFS features, 134 basic 
features plus two randomly chosen features that were not in 136 basic 
features, and 134 basic features plus the two EFS features. Then, two 
fast classification algorithms, NB and DT, were selected to gain all the 
metric results (around 42 and 129 seconds, accordingly). As shown in 
Figure ‎14, the best results were recorded when the two EFS features 
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features plus two randomly chosen features that were not in 136 basic features, and 134 basic features 
plus the two EFS features. Then, two fast classification algorithms, NB and DT, were selected to gain 
all the metric results (around 42 and 129 seconds, accordingly). As shown in Figure 14, the best results 
were recorded when the two EFS features were incorporated. Although DT precision decreased by ~1 
percent, the F1 score and AUC were still greater when adding the two EFS features. 
 
Figure 14 
 
Classification Performance of the 136 Basic Features with and without EFS of numPktsSnt and Rcvd 
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were incorporated. Although DT precision decreased by ~1 percent, 
the F1 score and AUC were still greater when adding the two EFS 
features.

Figure 14

Classification Performance of the 136 Basic Features with and 
without EFS of numPktsSnt and Rcvd

Evaluating TLSMalDetect Detection Performance

The overall TLSMalDetect detection performance was evaluated with 
different ML classification algorithms implemented using 136 basic 
features and the top 23 feature sets. The seven classification models’ 
metric performance results are listed in Table 3. Comparing the 
algorithm’s metric results showed that NB had the best F1, accuracy, 
and recall, while RF had the greatest AUC and precision. The best 
values of each metric are emphasized in bold colors. Compared to 
the related works that used the same datasets, NB results were the 
highest. The NB model was also selected as the final model for 
TLSMalDetect because it scored the best accuracy utilizing the class-
balanced dataset.

Furthermore, when the results of the two feature sets, the 136 basic 
and top 23, were analyzed, almost all second set values were higher 
than the first set values. This observation indicated the significance of 
dimensionality reduction in boosting performance.
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Comparison with Related Studies

Detecting TLS-based malware using the MCFP dataset as a primary 
source and ML classification was comparable to what Strasák (2017) 
and Jenseg (2019) did, despite the feature differences. Therefore, it 
was insightful to compare TLSMalDetect performance with these two 
studies depending on the best precision and recall. Precision expresses 
how many alerts raised are for actual malware flows, and recall reflects 
how many malicious flows are triggered out of all malicious flows. 
Table ‎4 illustrates the best precision and recall of TLSMalDetect and 
the two related studies. The table showed that TLSMalDetect’s best 
precision exceeded Strasák’s (2017) best precision by more than 1 
percent through utilizing the basic feature set. Additionally, using the 
top 23 features, TLSMalDetect’s best recall slightly surpassed the 
best recall of Jenseg (2019) by ~0.3 percent. Moreover, it is worth 
noting that XGboost’s TLSMalDetect precision of 98.26 percent also 
surpassed the best precision achieved in Strasák’s (2017) study. 
 
Table 4

Comparison with Other Two Related Studies

Feature 
Set

Evaluation 
Metric

Related 
Work

Best Result Best Result Algo.

Related 
Work

TLSMalDetect Related 
Work

TLSMalDetect

Basic 
feature 
set

Precision Strasák 
(2017) 97.78% 98.99% XGBoost RF

Top 23 
features Recall Jenseg 

(2019) 92.88% 92.91% RF NB

Based on the findings in Table 4, it can be concluded that compared 
to the total alerts, TLSMalDetect can raise true malware alerts more 
than Strasák’s (2017) detector since it showed a higher precision rate. 
More importantly, TLSMalDetect can also detect more actual malware 
flows than Jenseg’s (2019) approach out of all malicious flows due to 
its greater recall rate.

Although the recall rate increase is slight, its impact on detection in 
real-life implementation is substantial. Detecting a few more malware 
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flows could safeguard the whole network from severe security 
breaches.

Furthermore, the variation of ML algorithms used to obtain the best 
results in Table 4 demonstrated that no perfect ML algorithm works 
for all cases studied. Therefore, many algorithms should be tested to 
select the best one eventually.

CONCLUSION

TLS-based malware is one of the severest malware forms due to its 
reliance on encryption to conceal communication. Various anomaly-
based detection research works have been introduced to leverage 
different features and ML algorithms in detecting TLS-based malware. 
However, most of these works ignored flow feature transformation 
or depended on inefficient flow feature transformation techniques 
such as obtaining the frequency (periodicity indicator) and outlier 
percentage. Therefore, a TLS-based malware detection approach 
named TLSMalDetect was proposed to overcome these drawbacks 
by integrating periodicity-independent EFS features. As seen in 
the findings, the EFS of numPktsSnt and numPktsRcvd were more 
effective than the corresponding outlier percentage and flow features 
using four feature importance methods: MI, LR regularization-L1, RF, 
and XGboost. The results also indicated that EFS features increased 
the detection performance, especially the accuracy by ~42 percent 
and ~1.5 percent in the cases of SVM and DT, accordingly. Apart 
from EFS, some newly integrated TCP features showed promising 
importance and were highly ranked using MI and LR regularization-L1 
methods. Moreover, utilizing the basic features, TLSMalDetect had 
the best F1 (93.37%), accuracy (93.69%), and recall (91.30%) by NB, 
and the highest precision (98.99%) and AUC (99.01%) by RF. The 
NB results were also the first in the related literature using the same 
dataset. Finally, TLSMalDetect’s performance outperformed two 
similar studies based on the best precision and recall. 

Future research should explore the relationship between each malware 
family and the classification performance and study the impact 
of using more feature types such as contextual DNS and HTTP. It 
is also worth to investigate the performance of neural networks, 
such as Convolutional Neural Network (CNN), which have shown 
encouraging results in the related literature.
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