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ABSTRACT

Transport Layer Security (TLS) based malware is one of the most
hazardous malware types, as it relies on encryption to conceal
connections. Due to the complexity of TLS traffic decryption, several
anomaly-based detection studies have been conducted to detect TLS-
based malware using different features and machine learning (ML)
algorithms. However, most of these studies utilized flow features
with no feature transformation or relied on inefficient flow feature
transformations like frequency-based periodicity analysis and outlier
percentage. This paper introduces TLSMalDetect, a TLS-based
malware detection approach that integrates periodicity-independent
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entropy-based flow set (EFS) features generated by a flow feature
transformation technique to solve flow feature utilization issues in
related research. The effectiveness of EFS features was evaluated
in two ways: (1) by comparing them to the corresponding outlier
percentage and flow features using four feature importance methods,
and (2) by analyzing classification performance with and without EFS
features. Moreover, new Transmission Control Protocol features not
explored in the literature were incorporated into TLSMalDetect, and
their contribution was assessed. This study’s results proved that EFS
features of the number of packets sent and received were superior to
the related outlier percentage and flow features and could remarkably
increase the performance up to ~42 percent in the case of Support
Vector Machine accuracy. Furthermore, using the basic features,
TLSMalDetect achieved the highest accuracy of 93.69 percent
by Naive Bayes (NB) among the ML algorithms applied. From a
comparison view, TLSMalDetect’s Random Forest precision of 98.99
percent and NB recall of 92.91 percent exceeded the best relevant
findings of previous studies. These comparative results demonstrated
TLSMalDetect’s ability to detect more malware flows out of total
malicious flows than existing works. It could also generate more
actual alerts from overall alerts than earlier research.

Keywords: Malware detection, machine learning, TLS, entropy,
flow features.

INTRODUCTION

With the growing usage of encryption to ensure users’ privacy,
malware authors opt to embrace encryption protocols such as
Transport Layer Security (TLS) and communication over Hypertext
Transfer Protocol Secure (HTTPS) connections to hide malicious
connections. According to Sophos Labs, roughly 44 percent (almost
half) of information-stealing malware and 23 percent of all malware
categories employ TLS while transmitting or receiving orders from
Command and Control (C&C) servers, installing harmful payloads, or
accessing data provided by that payload (Nagy, 2020).

An Intrusion Detection System (IDS) is a network security system
that scans for unusual behavior and warns users of malware. It is
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installed either on the host side (Host Intrusion Detection System,
HIDS) or the network (Network Intrusion Detection System, NIDS).
An IDS may also be classified into two types: signature-based, which
utilizes databases with known attack patterns, and anomaly-based,
which identifies unexpected abnormal behavior by comparing it to the
network’s regular activity. However, signature-based NIDS cannot
detect TLS-based malware due to the unavailability of clear-text
metadata and the complexity of traffic decryption. As a result, NIDS
research has been shifted to anomaly-based detection that does not
require decryption.

In the research area of TLS-based malware anomaly detection in a
network, several feature types have been used, such as flow (e.g., the
number of packets or bytes, duration), packet, TLS handshake, and
contextual Hypertext Transfer Protocol (HTTP) and Domain Name
System (DNS). The features are extracted from traffic, pre-processed,
and passed into detection techniques such as machine learning (ML).
Nevertheless, involving certain flow features, such as the number of
packets sent/received or duration, could be inefficient in malware
anomaly behavior classification (Anderson et al., 2018; Jenseg, 2019;
Liuetal.,2019; Marousek, 2017; Roques et al., 2019). The explanation
for this is that the range of feature values in the malicious traffic could
vary over time (in the same malware capture or different malware
captures), making it impossible to predict or classify. For instance,
supposing the number of packets sent of several flows are: {1, 1,7, 7,
10, 10, 10, 1, 4, 11, 11, 20, 20}, the abnormal behavior (regularity) is
seen; however, the value ranges vary, making classification prediction
unfeasible. With this issue, the classification model learns less
important or uninformative (irrelevant) flow features and takes longer
to train.

Feature engineering addresses this challenge with domain knowledge.
One of the feature engineering processes is feature transformation, by
which new features are evolved from existing ones through arithmetic
and aggregation operations. Using feature transformation on flow
features in sets (groups) can provide additional features capable of
exposing anomalous behavior. Nevertheless, only a few feature
transformation methods have been used in related works to tackle the
range change of flow feature value with various drawbacks.

One method is to apply frequency-based analysis like Fourier
(converting from a time domain to a frequency domain) to discover
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the periodicity of a flow set feature (Fehrman et al., 2020). The
higher the frequency, the more likely the malware exists. Although
this method often works, malware can show a non-periodically
continuous anomaly pattern, rendering ML detection ineffective
based on frequency.

Another method uses statistics to distinguish outliers in feature values,
avoiding the limitations of periodicity assumption. By calculating
standard deviation and mean, the percentage of all values out of range
of mean+ standard deviation and mean — standard deviation (outliers)
can be discovered (Dai et al., 2019; Strasak, 2017). The differences
in percentages can distinguish the traffic, whether it is malicious or
benign. Nevertheless, this methodology has a disadvantage because
malware can have the same outlier percentage as normal traffic but
with different anomaly value distributions. Furthermore, outlier
values substantially impact the mean and standard deviation (very
small/large values can reduce/increase the standard deviation), and
outliers are uncommon in small samples.

This paper aims to address the above-highlighted related works’
weaknesses and boost the detection performance by proposing
TLSMalDetect, a TLS-based malware detection approach based on ML
classification. TLSMalDetect uses an entropy-based flow set feature
transformation technique to generate periodicity-independent features
named entropy-based flow set (EFS) features. EFS features’ efficiency
is assessed by examining their effect on classification performance
and comparing them to the related works’ corresponding outlier-
based and flow features using different feature importance methods.
The study also evaluates new Transmission Control Protocol (TCP)
features not explored in the literature based on feature importance.
Moreover, it tests TLSMalDetect’s detection performance using seven
ML classification algorithms and selects the best accuracy achieving
algorithm. Finally, TLSMalDetect performance is compared to two
similar studies based on the best precision and recall.

The rest of the paper is organized as follows. The second section
presents a review of the related works. The proposed TLSMalDetect
approach is described in the third section. The fourth section presents
the results and discussion, followed by the final section that concludes
the research and offers future work recommendations.
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RELATED WORKS

Since TLS-based malware detection based on signature violates users’
privacy and requires expensive computation, NIDS researchers have
focused on anomaly-based detection using ML. As a result, various
features such as TLS, TCP, contextual DNS and HTTP, flow, and
packet features have been extracted from the traffic to create reliable
detection systems.

TLS is a cryptographic protocol that offers privacy and integrity
between a client and a server and is mainly used with HTTP. Before a
TLS connection is formed between two parties, handshake messages
are conveyed carrying clear-text metadata from which features can
be retrieved. Client hello, a client-side TLS handshake message, was
used in the early detection because it is the first message sent (Liu et
al., 2019). It also contains numerous metadata fields like ciphersuites,
extensions, compression techniques, and client version. Most of the
literature have utilized ciphersuites as they are a good differentiator
between malware and benign traffic (Anderson et al., 2018; Anderson
& McGrew, 2016; 2017; Calderon et al., 2018; Liu et al., 2019;
Roques et al., 2019; Senecal et al., 2019). Client hello extensions are
also essential, like Server Name Indication (SNI) extension. Using the
CTU-13 Stratosphere dataset, Bazuhair and Lee (2020) examined the
SNI value if it is an Internet Protocol (IP) address and included that as
a feature in their approach based on Perlin noise with Convolutional
Neural Network (CNN). They also employed Naive Bayes (NB)
in the performance result comparison. Nevertheless, other studies
focused on TLS handshake server messages, especially certificate
features (Kato et al., 2019; Torroledo et al., 2018). Kato et al. (2019)
conducted a study on android TLS malware detection, achieving
Random Forest (RF) accuracy of 93.90 percent by merging the
TLS certificate features of the new scheme with the old scheme and
simple DP-based scheme (SDPBS). As demonstrated, TLS features
are essential in the detection; therefore, they are utilized with other
features in this paper’s approach, TLSMalDetect.

Besides TLS, TLS-based malware also uses firewall port-opened
application protocols such as HTTP and DNS to assist in the attacks,
like Qbot malware (Malware-Traffic-Analysis.Net - Qbot (Qakbot)
Infection, 2020). Different contextual HTTP and DNS features are
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used in two types: statistical-based like the number of IPs in a DNS
request, or string-based such as HTTP content-type (Anderson &
McGrew, 2016; Calderon et al., 2018; Senecal et al., 2019).

In addition, researchers have used other Transmission Control
Protocol/Internet Protocol (TCP/IP) stack protocols that function
under the TLS protocol layer, such as TCP and IP. For example,
Anderson et al. (2019) integrated TCP packet length and TCP Push
flag features in a framework for HTTPS/TLS malware detection
that applies two ML classifiers. Strasak (2017) divided 13 TCP
connection states into two groups: established and not established,
and then calculated the “Ratio of Established States of Connection”
feature. Furthermore, Anderson and McGrew (2017) used packet
features in two feature sets: Standard, which only has packet features,
and Enhanced, which has packet features and TLS features. Among
all other RF accuracies in the literature, they attained the highest
accuracy rate of 99.99 percent using the Enhanced set. Packet features
were further processed using the Markov chain (binning) to provide
additional vector features known as the sequence of packet lengths/
times (SPL/T) (Jenseg, 2019; Zheng et al., 2020).

Moreover, a majority of the existing works have included network
flow features in their approach feature sets. Table 1 shows several flow
features used and ways for extracting them. Some researchers used
flow features without grouping flows into sets. For example, Anderson
et al. (2018) extracted flow features (metadata) using the software
they wrote. Then, by applying 11-logistic regression, the researchers
compared the findings of three feature type groups, including flow
features, and obtained an excellent overall accuracy of 99.6 percent.
In contrast, other researchers grouped flows into sets and utilized flow
set features. For instance, Dai et al. (2019) and Strasak (2017) used
the flow set (or connection, as they called it) features, such as the total
of the duration, number of packets, and bytes.

However, using flow or flow set features is not always effective in ML
classification since the range of feature values might vary over time
and become unclassified. As a result, feature transformation of flow
features within a set is required to reveal the set’s malicious behavior.
Table 1 also summarizes the flow feature transformation methods
employed in the research works and the consequent weaknesses.
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Table 1

A Comparison of Flow Feature Usage in Related Works
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Some existing research works applied two flow feature transformation
methods: Fourier frequency analysis and outlier percentage. Fehrman
et al. (2020) applied the first method in their system, which did not
rely on ML. They detected TLS-based malware beacons by getting
the frequency using Fourier transformation on flow set features and
calculating the number of server TLS certificates. The higher the
frequency, the more likely the malware exists, and the fewer servers,
the less chance of malicious connection existence. Nevertheless, the
research is limited since TLS-based malware may not exhibit periodic
anomaly behavior. Dai et al. (2019) proposed a detection method
based on multi-view features, including flow statistics, and compared
it with Strasak’s (2017) work based on feature engineering. As in
Strasak’s (2017) study, Dai et al. (2019) calculated the percentage of
all values out of the Mean+/-StandardDeviation; the normal traffic
usually has a higher percentage than the malware one. The percentage
is then used as a new feature in ML. Unfortunately, this approach
is limited as the malware distribution of feature values may imitate
the benign one, and outlier values substantially impact the mean and
standard deviation.

In summary, different features were utilized in the related works of
TLS-based malware anomaly-based detection. These features were
extracted from TLS, contextual DNS and HTTP, TCP, packet, and
flow. However, as seen in Table 1, most related works had drawbacks in
using flow features with no feature transformation or using inefficient
transformation methods such as outlier-based and frequency analysis
features. Besides, only one related study by Bazuhair and Lee (2020)
applied NB for ML results comparison using features taken from the
CTU-13 dataset. Therefore, this paper proposes a TLSMalDetect
approach to address the previous weaknesses by using periodicity-
independent EFS features created from a flow feature transformation
technique. Furthermore, the approach includes NB as one of several
algorithms to test its performance.

THE PROPOSED TLSMALDETECT APPROACH

This section explores the proposed TLSMalDetect approach, which
efficiently detects TLS-based malware by adding EFS features.
TLSMalDetect has three phases: 1) data collection; 2) feature
processing; and 3) machine learning. Figure 1 depicts the overall
TLSMalDetect structure.

287



Journal of ICT, 21, No. 3 (July) 2022, pp: 279-313

Figure 1

The Proposed TLSMalDetect Approach
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Phase 1: Data Collection

Traffic captures from public sources were collected in packet capture
(PCAP) format. Both malicious and benign traffic types were needed
to train the ML model in Phase 3.

Phase 2: Feature Processing

In this phase, the PCAP files were processed and prepared for the
input of Phase 3. The sub-phases are explained as follows:

1) Metadata Generation

PCAP files contain raw traffic data that must be processed further to
obtain useful features. Therefore, each PCAP file was parsed into a
metadata file using the Tranalyzer open-source software (Tranalyzer -
About, n.d.). The metadata file comprised many unidirectional flows;
each had several features, like packets and bytes, TCP stream, TLS
handshake, etc.
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2) Flow set Feature Generation

Each metadata file was read in this sub-phase, and a new one with
additional flow set features was created through four steps, as illustrated
in Figure 2. First, each metadata file was split into multiple sets.
According to Albright (2021) from Databox, the average user session
duration is 2—-3 minutes. After examining many traffic captures, the
study found that 300 flows usually form at least a 3-minute session.
Therefore, a flow set was chosen to have 300 unidirectional flows.
If a PCAP had less than 300 flows, all flows were taken. It is worth
emphasizing that flows were divided based on count rather than
destination IP since malware may connect with several server IPs,
causing anomalous flow behavior through all of them.

Figure 2

Flow Set Features Generation Steps

Splitting @

PCAP the metadata @ For each flow set
Metadata file file into

flow sets

Flow-set features 0
(durati s in/out)
transformation

Adding
Outliers %
Features

file
(With the generated flow-set features)

Second, the duration and the number of packets sent and received for
each flow set were transformed, generating new additional features.
The feature transformation methods applied are:

(1) Entropy

As malware is an automated program, it usually exhibits
regularity for some features, while benign software shows
randomness. This behavior difference was captured using the
entropy in Equation 1 given.
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Entropy (C) = — Z p(¢) log (p(cy)) (1)
i=1

Where C={c;, ¢, ...c;} and C; represents the duration or number
of packets sent/received for each flow in a flow set, n is the
number of the unique values, andp(c;)indicates the probability
of each value ¢;.For the duration, the numbers were rounded to
have two digits after the decimal point.

Applying entropy has several advantages: (1) It is periodicity
independent; as the equation indicates, it just needs a
probability of each value. Therefore, it can differentiate the
anomaly behavior (regularity) of malware values even if
they are nonperiodic. (2) It is independent of the distribution
of values, meaning that it can discover malicious regularity
even though both malware and benign have the same value
distribution (e.g., Gaussian) with the same number of outliers
(outside Mean+/-Standard Deviation).

(i1)Outliers

This existing work method was used to be compared with
entropy features. It works by calculating the proportion of
values outside the range (Mean+/-Standard Deviation).

Third, the resulting entropy values (EFS) and the outlier percentages
were added as six extra flow set features to each flow to indicate
the behavior of the contained flow set. Finally, Steps 2 and 3 were
repeated for each flow set. When there were no more flow sets to take,
the flow sets were merged in one new metadata file, including the
extra EFS and outlier percentage features, and then the file was stored.

3)  Merging New PCAP Metadata Files

The previous Sub-phases (1) and (2) were repeated for each PCAP
file. Then, all PCAP metadata files produced were merged in sequence
in one master metadata file.

4)  Specifying the Feature Set and Cleansing Data
The master metadata file contained many irrelevant features outside
the scope of this study. These features were removed in this sub-
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phase, and other features were kept, which are listed in Table 2. The
literature’s most common TLS, TCP, and flow features were selected
besides the created EFS and outlier percentage features. Additionally,
TCP features that have not been utilized in related studies were
included.

After that, flows with missing feature values were removed to improve
classification accuracy while minimizing the cost of dealing with a
large metadata file. Following malware and benign flow filtration, the
malware flows reduced to 328 flows. The remaining 328 flows were
added from another malware capture of Trickbot to balance the two
classes and reduce the ML prediction bias. The final number of flows
for each class (malware and benign) was 139,560.

Table 2

The Selected Feature Sets

Feature
Type Data Type Feature
Flow Numeric  The number of input packets and output packets
Flow Numeric  The flow duration (seconds)

The entropy of the number of input packets and
output packets (EFS)

Flow set Numeric The entropy of flow duration (EFS)

Flow set  Numeric

The outlier percentage of the number of input

FI i
owset  Numeric packets and output packets

Flow set Numeric The outlier percentage of flow duration

Flow Numeric  The number of input bytes and output bytes
. The min, max, average, and standard deviation of
Flow Numeric .
layer 3 packet size
Flow Numeric The min, max, average, and standard deviation of
layer 3 packet IAT
Flow Numeric  Sent packets/bytes per second
TCP Numeric  TCP packet sequence count and ACK count
TCP Numeric  TCP sent sequence bytes
TCP Numeric  The fault number of TCP sequence and ACK
TCP Numeric TCP flawless ACK received bytes (new)

(continued)
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Feature
Type Data Type Feature
TCP Numeric TCP effective window size change down count
and up count (new)
TCP Numeric TCP effective window size direction change
count (new)
. TCP packet count ratio below window size
Tee Numeric (o \MIN threshold (new)
TCP flags (FIN/SYN/PSH/ACK/URG/ECN-
TCP Value List Echo/CWR)
TCP Anomaly states (new) (FIN-ACK/ SYN-
ACK/ RST-ACK/ SYN-FIN/SYN-FIN-RST/
. . FIN-RST/Null/XMas flags, L4 option field
Tep Value List corrupt, SYN retransmission, Sequence Number
retry/out of order/jump forward, ACK number
out of order, Duplicate ACK)
TCP Numeric The number of TCP option packets in a flow
(new)
TCP Numeric  The count of TCP options a flow has (new)
TLS Numeric  SSL (TLS) version
TLS Numeric The nqmber of client extensions, EC points, and
EC point formats
TLS Value List The list of client extensions and client EC points
TLS Numeric  The number of protocols
TLS Numeric  The number of supported client ciphers
TLS Value List The list of supported client cipher
. . The number of change_cipher, alert, handshake,
TLS Value List application data, and heartbeat records
5) Categorical Variables Processing and Feature Scaling

Features that had a list of values, like the client extensions, were split
by the semicolon “;” or “ ”, and then were binary encoded in new
columns (features), as shown in Figure 3. Furthermore, SSL version
feature values were encoded by the one-hot-encoding method. The
total number of features was 272. Finally, all feature values were

scaled (normalized) into a fixed range between 0 and 1.
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Figure 3

Binary Encoding of Value List Features
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6) Labeling the Final Data

Flows were tagged or labeled with either malware (number 1) or
normal flow (number 0). This procedure was essential for the ML
phase.

Phase 3: Machine Learning

In this phase, the total number of features (272) of the labeled master
metadata file was reduced to 136 due to the experiment’s resource
limitations. The 136 basic features were the top features obtained
using RF feature selection with 10-fold cross-validation (CV) as the
RF algorithm has shown promising results in the literature. Moreover,
for a proper result comparison with Jenseg’s (2019) study, the same
number of features used in that study, the top 23, were identified using
the coefficient-based method, i.e., LR regularization L1.

After that, each feature of the 136 basic features was assigned
importance values using four methods: 1) Mutual Information (MI)
- Filter method; 2) Logistic Regression (LR) regularization with
penalty L1 - Embedded method; 3) RF - Embedded method; and 4)
XGBoost - Embedded method. Then, based on the feature importance
values, EFS, outlier percentage, and flow features were compared to
know the most superior features. The newly presented TCP features
were also assessed based on feature importance. In the case of RF and
XGboost methods, 10-fold CV was used, and the average of feature
importance values for all folds was calculated to avoid bias.

Furthermore, different ML algorithms were applied to assess the
TLSMalDetect detection performance and examine the effect of

including and excluding EFS features on that performance. The

293



Journal of ICT, 21, No. 3 (July) 2022, pp: 279-313

algorithms were LR, NB, RF, K-Nearest Neighbor (KNN), Support
Vector Machine (SVM), Decision Tree (DT), and XGBoost. The best
performing ML algorithm for TLSMalDetect was also determined
based on accuracy metric as the two dataset classes (malware and
benign) were balanced. Moreover, for accurate results without bias,
a 5-fold CV was applied to obtain the following metrics: F1-score,
accuracy, recall, precision, and AUC. The reason for choosing 5-fold
is that Anderson et al. (2018) obtained an excellent LR accuracy
of 99.6 percent using a total of ~500K flows and 10-fold CV. This
indicated ~50K flows per fold. For this paper’s experiment, out of
279,120 total flows, a 5-fold CV would provide ~50K flows per fold.

EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the results of the EFS features and TLSMalDetect
assessments. It also statistically explores the malware families in the
dataset and the contrasts between the malware and benign feature
values to understand their ground truth.

Datasets

Two public sources were used to collect the experiment dataset: CIC-
IDS2017 and Stratosphere IPS - Malware Capture Facility Project
(MCFP) (from years: 2013, 20162018, 2020, 2021) (IDS 2017 |
Canadian Institute for Cybersecurity | UNB, n.d.; MCFP Dataset (
Malware Capture Facility Project - CTU University ), n.d.). The total
benign and malicious unidirectional flows collected were 1,552,221
and 10,919,379, accordingly. It was assumed that the malware flows
contained a few portions of benign traffic generated by operating
system requests. However, these portions do not simulate human
behavior.

The malware flows contained 28 families illustrated in Figure
B, according to MCFP Stratosphere IPS project categorization.
Two malware executables, which formed 94,701 flows, were from
unknown families, and they were found to access the malicious
websites http://node.viaxmr.com/ and http://5.8.88.175/. As shown in
Figure #, the most common malware family was Sality. This type of
malware infects Windows operating systems and can communicate
through encrypted peer-to-peer networks, creating a botnet.
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Figure 4

Malware Families
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Contrast between Malware and Benign Feature Values

The selection of features must be inspired by evident feature value
differences between malware and benign flows. Consequently,
certain features in the labeled master metadata file from Phase 2 were
displayed in figures.

1) EFS and Outliers Percent

Figures 5 and 6 display EFS and outlier percentage of the number
of packets received (numPktsRcvd) and sent (numPktsSnt). As
seen in these figures, the malware entropy values were often low as
compared to the benign values, indicating the regularity of malware.
Furthermore, most of the benign (green) portion in EFS figures
was more considerable and purer than the benign (green) portion in
outlier percentage figures. Therefore, numPktsRcvd and numPktsSnt
EFS features seemed better than the matching outlier percentage at
differentiating malware.
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Figure 5

Differences in Outlier Percentage and EFS of the Number of Packets
Sent
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Figure 6

Differences in Outlier Percentage and EF'S of the Number of Packets
Received
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Figures|[7 and 8 illustrate the distinctions between malware and benign
ciphersuites and extensions of the TLS client hello message (some
values were excluded for graph clarity). As seen in Figure 7, nearly
all malware flows offered a few extensions (2 or 3), while almost
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all benign flows offered more (9 or 10). Additionally, more than 77
percent of malware flows had 12 ciphersuites offered, and more than
60 percent of benign flows had 15 ciphersuites offered. These results
were consistent with those of Jenseg (2019) but differed in the number
of flows.

Figure 7

Differences in the Number of Client-Offered Ciphersuites and
Extensions
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Figure 8

Differences in Client-Offered Ciphersuites and Extensions
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As shown in Figure 8, ~90 percent of malware flows provided the
extensions 0x000a (supported groups - elliptic curves) and 0x000b
(EC point formats). Nevertheless, these extensions were not good
distinguishers of malware because the normal flows offered them at
almost the same frequency. On the other hand, around 100 percent
of benign flows advertised O0xff0l1 (renegotiation info), 0x0023
(session ticket), and 0x0000 (server name) extensions. Consistent
with the studies by Anderson et al. (2018) and Roques et al. (2019),
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some extensions were seen in 70 percent or more of the benign flows
and rarely seen in the malware flows. These extensions were 0x0005
(Status request), 0x0010 (ALPN), 0x0017 (Extended master secret
type), 0xff01(renegotiation_info).

When investigating the advertised ciphersuites, the distinction between
malware and benign flows became more apparent. As seen in the
ciphersuites part of Figure 8, four ciphersuites perfectly distinguished
flows, three for malware and one for benign flows. Interestingly, these
four ciphersuites were all considered weak, according to Rudolph and
Grundmann (n.d.). The four ciphersuites were as follows:

. 0x0035 (advertised by ~100% of malware flows and < 3% of
benign flows).

. 0x0038 (advertised by ~86% of malware flows and < 3% of
benign flows).

. 0xc00a (advertised by ~92% of malware flows and < 3% of
benign flows).

. 0x009f (advertised by ~100% of benign flows and < 3% of
malware flows).

The description of the hex code of ciphersuites can be found on the
IANA website (Transport Layer Security (TLS) Parameters, n.d.).

3 TCP

Figure 9 presents the variances between malware and benign traffic
relevant to TCP anomaly states. As shown in the figure, the malware
solely sent SYN-ACK flag (the benign flows had zero SYN-ACK
flags) and sent more of RST-ACK flag than the benign applications.
One possible explanation for the malware’s only usage of the SYN-
ACK flag is that the malware operated as a TCP server receiving
connection (with SYN flag) from the attackers or, in the case of
botnets, from other malware peers. Another explanation is that the
malware sent SYN-ACK packets in response to modified SYNs sent
by the C&C server to exhaust another victim device (Seaman, 2019).
The other observation of the increase in RST-ACK flag could be
attributed to RST attacks such as RST hijacking to reset the victim’s
session or RST flood/DDoS.
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Figure 9

Differences in TCP Anomaly Features
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Feature Importance and EFS Features Superiority

The feature importance values for the top 50 features using MI are
depicted in Figure [10. The EFS features (in red) were the top three,
exceeding the corresponding outlier percentage (in purple) and flow
features (in green). The numPktsSntOutliersPercent feature was not
shown in the top 50 features figure as it was less significant.
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Figure 10

Top 50 Features using Mutual Information — Filter Method
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When the LR regularization feature importance method was used,
the superiority of EFS over the matching outlier percentage and flow
features was further proven. Figure 11 illustrates the top 40 features
obtained by applying that method. The feature importance values
were the coefficients of the LR model; the closer to 0 the value is,
the less important it is. As shown in the figure, all EFS features (in
red) were superior to the matching outlier percentage (in purple) and
flow features (not even in the top 40), excluding one EFS feature,
durationEntropy. However, durationEntropy immediately followed
durationOutliersPercent in the absolute value order of the coefficients,
and it outranked the duration flow feature.

Figure 11

Top 40 Features using LR Regularization with Penalty L1 — Embedded
Method
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For more certainty, two additional tree-based embedded feature
importance techniques were used with 10-fold CV to prevent bias:
RF and XGboost. Figure [12 displays the sorted list of the average of
the 10-fold feature importance values for EFS, outlier percentage, and
flow features. Once more, the EFS features (in red) outperformed the
matching outlier percentage (in purple) and flow features (in green)
apart from durationEntropy, which was even lower than the duration
flow feature using XGboost.
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Figure 12

The Average Feature Importance using RF and XGBoost with 10-fold
cv
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Based on the above findings, it can be inferred that the EFS of
flow duration is not a very powerful feature as compared to outlier
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percentage and flow features. It could be because the duration values
were taken precisely (two digits after the decimal point); therefore,
the entropy did not distinguish well. However, the two EFS features
of numPktsRcvd and numPktsSnt contributed more to TLS-based
malware detection than the corresponding outlier percentage and flow
features. They are superior to the matching outlier percentage because
they can expose regularity in malware flow features without depending
on value distribution and are more efficient than flow features as they
can discover behavior regularity.

Interestingly, further analysis of Figures 10 and 11 revealed that
the top 40 features encompassed TLS, TCP, and flow features. As
a result, it may be advised that all these feature types should be
utilized to identify TLS-based malware and should not be ignored. It
is also worth noting that some of the newly presented TCP features
confirmed their excellent capability to distinguish malware, as seen
by their presence in the top features. TCP flawless ACK received
bytes (tcpFlwLssAckRcvdBytes, ranked 6 by MI) and TCP Anomaly
state SYN-ACK flag (tcpAnomaly 1 2, ranked 13 by LR) are two
examples of these features.

Furthermore, the findings of the MI and LR feature importance
methods could provide more information about the TLS features
that have been infrequently employed in the literature, as found in
the review study by Keshkeh et al. (2021). For example, the Elliptic
Curve Group Number (ssINumECPt) and Ciphersuites Number
(ssINumCipher) were shown to be essential for detection, with the
former ranking 5 (LR) and the last ranking 8 (MI).

Effect of EFS Features on Performance

The two EFS features of numPktsRcvd and numPktsSnt were
demonstrated to be the most significant. Therefore, they were selected
to analyze the EFS features’ impact on classification performance.
One experiment was to apply classification algorithms using the top
23 features in two scenarios: including and excluding the two EFS
features. Figure 13 compares F1, accuracy, precision, and AUC results
for each algorithm and scenario. It was shown that adding the two
EFS features improved all selected metrics, except for the minimal
decrease in XGboost precision by ~0.14 percent. Furthermore, the
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performance improvement was more apparent in SVM (~42% higher
accuracy) and DT (~1.5% higher accuracy).

Figure 13

Classification Performance of the Top 23 Features with and without
EFS of numPktsSnt and Revd
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Another experiment used the 136 basic features to analyze the effect
of the two EFS features. Three feature lists were used: 134 basic
features were obtained by removing the two EFS features, 134 basic
features plus two randomly chosen features that were not in 136 basic
features, and 134 basic features plus the two EFS features. Then, two
fast classification algorithms, NB and DT, were selected to gain all the
metric results (around 42 and 129 seconds, accordingly). As shown in
Figure [14, the best results were recorded when the two EFS features

306



Journal of ICT, 21, No. 3 (July) 2022, pp: 279-313

were incorporated. Although DT precision decreased by ~1 percent,
the F1 score and AUC were still greater when adding the two EFS
features.

Figure 14

Classification Performance of the 136 Basic Features with and

without EFS of numPktsSnt and Rcvd
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Evaluating TLSMalDetect Detection Performance

The overall TLSMalDetect detection performance was evaluated with
different ML classification algorithms implemented using 136 basic
features and the top 23 feature sets. The seven classification models’
metric performance results are listed in Table 3. Comparing the
algorithm’s metric results showed that NB had the best F1, accuracy,
and recall, while RF had the greatest AUC and precision. The best
values of each metric are emphasized in bold colors. Compared to
the related works that used the same datasets, NB results were the
highest. The NB model was also selected as the final model for
TLSMalDetect because it scored the best accuracy utilizing the class-
balanced dataset.

Furthermore, when the results of the two feature sets, the 136 basic
and top 23, were analyzed, almost all second set values were higher
than the first set values. This observation indicated the significance of
dimensionality reduction in boosting performance.
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Comparison with Related Studies

Detecting TLS-based malware using the MCFP dataset as a primary
source and ML classification was comparable to what Strasak (2017)
and Jenseg (2019) did, despite the feature differences. Therefore, it
was insightful to compare TLSMalDetect performance with these two
studies depending on the best precision and recall. Precision expresses
how many alerts raised are for actual malware flows, and recall reflects
how many malicious flows are triggered out of all malicious flows.
Table @ illustrates the best precision and recall of TLSMalDetect and
the two related studies. The table showed that TLSMalDetect’s best
precision exceeded Strasdk’s (2017) best precision by more than 1
percent through utilizing the basic feature set. Additionally, using the
top 23 features, TLSMalDetect’s best recall slightly surpassed the
best recall of Jenseg (2019) by ~0.3 percent. Moreover, it is worth
noting that XGboost’s TLSMalDetect precision of 98.26 percent also
surpassed the best precision achieved in Strasak’s (2017) study.

Table 4

Comparison with Other Two Related Studies

Best Result Best Result Algo.
Feature Evaluation Related
Set Metric Work  Related TLSMalDetect Related ~ TLSMalDetect

Work Work
pasie Strasak
feature  Precision (2017) 97.78% 98.99% XGBoost RF
set
Top 23 Jenseg o .
features  o°2ll (2019) 92.88% 92.91% RF NB

Based on the findings in Table 4, it can be concluded that compared
to the total alerts, TLSMalDetect can raise true malware alerts more
than Strasak’s (2017) detector since it showed a higher precision rate.
More importantly, TLSMalDetect can also detect more actual malware
flows than Jenseg’s (2019) approach out of all malicious flows due to
its greater recall rate.

Although the recall rate increase is slight, its impact on detection in
real-life implementation is substantial. Detecting a few more malware
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flows could safeguard the whole network from severe security
breaches.

Furthermore, the variation of ML algorithms used to obtain the best
results in Table 4 demonstrated that no perfect ML algorithm works
for all cases studied. Therefore, many algorithms should be tested to
select the best one eventually.

CONCLUSION

TLS-based malware is one of the severest malware forms due to its
reliance on encryption to conceal communication. Various anomaly-
based detection research works have been introduced to leverage
different features and ML algorithms in detecting TLS-based malware.
However, most of these works ignored flow feature transformation
or depended on inefficient flow feature transformation techniques
such as obtaining the frequency (periodicity indicator) and outlier
percentage. Therefore, a TLS-based malware detection approach
named TLSMalDetect was proposed to overcome these drawbacks
by integrating periodicity-independent EFS features. As seen in
the findings, the EFS of numPktsSnt and numPktsRcvd were more
effective than the corresponding outlier percentage and flow features
using four feature importance methods: MI, LR regularization-L1, RF,
and XGboost. The results also indicated that EFS features increased
the detection performance, especially the accuracy by ~42 percent
and ~1.5 percent in the cases of SVM and DT, accordingly. Apart
from EFS, some newly integrated TCP features showed promising
importance and were highly ranked using MI and LR regularization-L1
methods. Moreover, utilizing the basic features, TLSMalDetect had
the best F1 (93.37%), accuracy (93.69%), and recall (91.30%) by NB,
and the highest precision (98.99%) and AUC (99.01%) by RF. The
NB results were also the first in the related literature using the same
dataset. Finally, TLSMalDetect’s performance outperformed two
similar studies based on the best precision and recall.

Future research should explore the relationship between each malware
family and the classification performance and study the impact
of using more feature types such as contextual DNS and HTTP. It
is also worth to investigate the performance of neural networks,
such as Convolutional Neural Network (CNN), which have shown
encouraging results in the related literature.
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