
    423      

Journal of ICT, 20, No. 3 (July) 2021, pp: 423–456

How to cite this article:
Taha, A. Y., Tiun, S., Abd Rahman, A. H., & Sabah, A. (2021). Multilabel over-
sampling and under-sampling with class alignment for imbalanced multilabel text 
classification.  Journal of Information and Communication Technology, 20(3), 423-
456. https://doi.org/10.32890/jict2021.20.3.6

Multilabel Over-sampling and Under-sampling with 
Class Alignment for Imbalanced Multilabel Text 

Classification

1Adil Yaseen Taha, 2Sabrina Tiun, 3Abdul Hadi Abd Rahman 
& 4Ali Sabah 

1,2,3&4 Faculty of Information Science and Technology 
Universiti Kebangsaan Malaysia, Malaysia

adil.yaseen89, alisabahphd @gmail.com
sabrinatiun, abdulhadi @ukm.edu.my

Received: 9/11/2019 Revised: 11/1/2021 Accepted: 24/1/2021 Published: 11/6/2021

ABSTRACT

Simultaneous multiple labeling of documents, also known as multilabel 
text classification, will not perform optimally if the class is highly 
imbalanced. Class imbalance entails skewness in the fundamental data 
for distribution that leads to more difficulty in classification. Random 
over-sampling and under-sampling are common approaches to solve 
the class imbalance problem. However, these approaches have several 
drawbacks; under-sampling is likely to dispose of useful data, whereas 
over-sampling can heighten the probability of overfitting. Therefore, 
a new method that can avoid discarding useful data and overfitting 
problems is needed. This study proposed a method to tackle the class 
imbalance problem by combining multilabel over-sampling and 
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under-sampling with class alignment (ML-OUSCA). In the proposed 
ML-OUSCA, instead of using all the training instances, it drew a new 
training set by over-sampling small size classes and under-sampling 
big size classes. To evaluate the proposed ML-OUSCA, evaluation 
metrics of average precision, average recall, and average F-measure 
on three benchmark datasets, namely Reuters-21578, Bibtex, and 
Enron datasets, were performed. Experimental results showed that 
the proposed ML-OUSCA outperformed the chosen baseline random 
resampling approaches: K-means SMOTE and KNN-US. Therefore, 
based on the results, it can be concluded that designing a resampling 
method based on class imbalance together with class alignment will 
improve multilabel classification even better than just the random 
resampling method. 

Keywords: Data mining, multilabel text classification, class 
imbalance problem, resampling method, class alignment.

INTRODUCTION

Multilabel classification is a task applied in various data mining 
applications, such labeling video, images, music, and texts. 
Multilabel classification assigns documents to several classes at 
the same time based on their belongings. This task differs from the 
traditional single label, which associates each document to one class. 
The classification task of the single label can also be considered as 
multiclass or binary classification. In multiclass classification, each 
document can belong to more than one label category, but only one 
label category is assigned. Whereas, in the multilabel classification, 
it is a generalization of the multiclass and binary classification, as 
it does not enforce any limits to the number of components that 
are held at the outputs (Charte et al., 2013; Siblini et al., 2019). 
Methods of multilabel text classification suffer from a high level of 
class imbalance, and because of that, they will not work efficiently (Ali 
et al., 2019; Glazkova, 2020; Japkowicz & Stephen, 2002; Koziarski 
et al., 2020). The main issue in class imbalance occurs when a certain 
class has an extremely higher number of instances than other classes 
(Tanha et al., 2020; Weng et al., 2018; Zhang et al., 2020). In actual 
conditions, skewness often occurs in the distribution of examples 
of certain classes that rarely appear. Such an issue affects learning 
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algorithms leaning toward the majority classes. Numerous solutions 
for imbalanced classification have been proposed by García et al. 
(2018), Pereira et al. (2020), Patel et al. (2020), Qiao et al. (2017), 
and Song et al. (2016). However, previous works principally focused 
on binary classifications that were less complex than multilabel 
imbalanced classification (Cascar et al., 2019; Sáez et al., 2016). 
Results of earlier studies have shown that random over-sampling and 
under-sampling are the most efficient approaches to solve imbalanced 
classifications (García et al., 2018; Sáez et al., 2016; Zhang et al., 
2020). However, the approaches have several drawbacks; under-
sampling is likely to dispose of useful data, whereas over-sampling 
can heighten the probability of overfitting (Charte et al., 2015; Qiao et 
al., 2017; Sáez et al., 2016). Therefore, a new method that can avoid 
discarding useful data and overfitting problems is needed.

This study presents a proposed method on handling the class imbalance 
problem for a multilabel learning model on text classification based on 
a new sampling and class alignment. The proposed method combines 
multilabel over-sampling and under-sampling, and class alignment, 
which is called the ML-OUSCA algorithm. This combination aims to 
deal with the limitations of previous approaches in tackling the class 
imbalance problem. Likewise, this study aims to balance the classes in 
the training set examples by joining and exploiting the power of over-
sampling, under-sampling, and non-sampling methods. However, the 
proposed method draws a new training set using under-sampling by 
only discarding a few non-useful majority class samples from the set. 
The discarding strategy in the under-sampling method is based on 
the interdependency between the training set samples. By contrast, 
over-sampling is performed by duplicating few randomly selected 
minority class samples from the dataset. In addition, the samples in 
the classes that are not too high or low in their numbers are identified 
as class alignment (balanced classes) and kept without resorting to 
over-sampling and under-sampling.

This work is henceforth structured into five sections. The next section 
presents a short review of previous related studies. The proposed 
method and its assessment are presented in the following section. 
The fourth section describes the carried-out experiments. Finally, the 
proposed method is concluded in the last section.
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RELATED WORKS

Multilabel class imbalance is a highlighted topic among the artificial 
intelligence (AI) community in recent years (Daniels & Metaxas, 
2017). Class imbalance also affects multilabel learning, whereby the 
high and low instance distributions of each label are largely imbalanced 
and broadly varied. The situation is exacerbated in the presence of 
numerous labels and low densities (Maheshwari et al., 2017; Zhang et 
al., 2020). Besides, the level of imbalance among multilabel datasets 
is greater than the binary or multiclass datasets (Charte et al., 2013).

Class imbalance is generally resolved using the under-sampling method. 
For instance, Rao and Reddy (2020) presented the under-sampling 
strategy (i.e., KNN-US) to reduce the less prominent instances from 
majority subsets to solve imbalanced dataset. The proposed method 
in Rao and Reddy (2020) identified the mostly misclassified instances 
based on the k-nearest neighbor (KNN) technique. Onan (2019) 
presented consensus clustering-based under-sampling method to lessen 
the number of instances of the majority class. Lin et al. (2017) presented 
two under-sampling strategies that also utilize the clustering technique. 
Zhang et al. (2018) proposed an approach based on the stacking and 
inverse random under-sampling methods. Zhang et al. (2018) used the 
inverse random under-sampling method to under-sample the majority 
class samples and applied the stacking approach to separate and classify 
the minority from the majority class. The inverse random under-
sampling method was also employed by Tahir et al. (2012) before 
applying an ensemble classifier. A bidirectional resampling method 
(i.e., multilabel decoupling bidirectional resampling (ML-DBR)) at 
the data level was proposed by Zhou et al. (2020). The disparity of 
the labels was minimized by decoupling the extremely concurrent data 
of the majority and minority labels and by calculating the effect of 
the labels during resampling. The independence of the instances was 
then guaranteed. However, the ML-DBR approach was tested using 
seven benchmark multilabel datasets, including the Enron text dataset. 
The results showed that the proposed method was able to outperform 
several methods, namely REMEDIAL, REMEDIAL-HwR-ROS, and 
REMEDIAL-HwR-HUS (Charte et al., 2019). Three classifiers were 
used to classify the dataset, which were label powerset (LP), binary 
relevance (BR), and multilabel k-nearest neighbor (ML-kNN) (Zhang 
& Zhou, 2007). In terms of Micro-F values, the usage of ML-DBR 
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helped the employed classifiers to achieve higher results than the 
compared methods on five out of seven datasets. Kim et al. (2019) 
presented the principles of under-sampling technique to solve a class 
imbalance problem. Pereira et al. (2020) presented a Multilabel Tomek 
Link (MLTL) based on the Tomek Link resampling method. This 
under-sampling algorithm detected and eliminated the so-called Tomek 
links from the multilabel dataset. If they were the nearest neighbors 
but belonged to different groups, a pair of instances was considered a 
Tomek link. In addition to being a subsampling method, MLTL could 
be implemented in a post-process cleaning stage for the ML-SMOTE 
method. According to Pereira et al. (2020), the justification for using it 
as a post-process cleaning stage relied on the fact that the class groups 
were typically not well specified after applying ML-SMOTE, i.e., some 
instances from the majority class might invade the space of the minority 
class or vice versa. Consequently, the feature space could be cleaned 
and the edges between classes smoothed by the MLTL method. 

Over-sampling is the second widely used method to resolve class 
imbalance. Sáez et al. (2016) applied this method in analyzing 
class characteristics, whereby the subsets of certain instances were 
identified in each class and increased individually. A novel reverse-
nearest neighborhood-based over-sampling method for the class 
imbalance of a multilabel dataset was introduced by Sadhukhan and 
Palit (2019). All those points that included the query point as one 
of their neighbors had the reverse nearest neighborhood of a query 
point. However, the proposed method was tested using ten mutilabel 
datasets including the Enron text dataset. The results showed that the 
proposed method was able to outperform label-specific features (LIFT) 
(Zhang & Wu, 2014), random k-labelset (RAKEL) (Tsoumakas et al., 
2010), improved baseline restoration (IBLR) (Cheng & Hüllermeier, 
2009), cross-coupling aggregation (COCOA) (Zhang et al., 2020), 
calibrated label ranking (CLR) (Fürnkranz et al., 2008), synthetic 
minority over-sampling technique (SMOTE) (Chawla et al., 2002), 
adaptive synthetic sampling (ADASYN) (He et al., 2008), and 
USAM (Fernández et al., 2017). In terms of F-measure, the proposed 
method achieved higher results than the compared methods on nine 
out of ten datasets. Last et al. (2017) presented a combination of 
k-means clustering and SMOTE over-sampling, which was called 
K-means SMOTE. The proposed method avoided noise generation 
and effectively overcame the imbalance problem between and within 
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classes. Another over-sampling technique was introduced by Abdi 
and Hashemi (2016) based on the Mahalanobis distance. Moreo et 
al. (2016) presented a new over-sampling method, i.e., distributional 
random over-sampling (DRO), explicitly designed to identify the 
imbalanced text dataset for which the distributional hypothesis 
held, according to which the importance of a feature was somehow 
determined by its distribution in large data corporations. The proposed 
method generated new random minority class synthetic documents by 
exploiting the distributional properties of the terms in the collection. 
However, the proposed method was evaluated on three mutilabel 
datasets, including Reuters-21578 text dataset. The proposed method 
was compared against three methods, namely random over-sampling 
(RO) and SMOTE (Chawla et al., 2002), BSMOTE (Han et al., 2005) 
and DECOM (Chen et al., 2011). The proposed method obtained 
higher results than the comparative methods on all datasets in terms of 
F-measure. Li et al. (2014) presented an over-sampling approach that 
used the clustering technique and the Euclidean distance. Meanwhile, 
Rivera (2017) introduced an over-sampling approach based on noise 
reduction and selective sampling of the minority class to achieve 
good predictive abilities concerning its membership. Another widely 
used modification of over-sampling was the synthetic minority over-
sampling technique (SMOTE) (Charte et al., 2015; Díez-Pastor et al., 
2015; Jian et al., 2016). Koziarski et al. (2019) presented a radial-
based over-sampling (RBO) method, which could find areas where 
artificial organisms of the minority class must be created based on 
estimating the imbalanced distribution of defects with radial basis 
functions. Two over-sampling methods, namely borderline-SMOTE1 
and borderline-SMOTE2, were presented by Han et al. (2005) to over-
sample the minority examples around the borderline.

The hybrid sampling method proposed by several studies (Dubey 
et al., 2014; Shi et al., 2018; Song et al., 2016; Wang, 2014) is a 
combination of the under-sampling and over-sampling techniques. 
This method showed promising results in comparison with the stand-
alone methods. Dubey et al. (2014) carried out a systematical analysis 
of various sampling techniques by studying the effectiveness of 
different rates and types of under-sampling and over-sampling and 
a combination of both methods. Shi et al. (2018) proposed an under-
sampling that selected the informative instances and features from the 
original dataset, whereas over-sampling balanced the majority class 
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instances. Song et al. (2016) proposed a hybrid of SMOTE and under-
sampling technique by applying k-means. Wang (2014) proposed a 
simple integration between under-sampling and over-sampling to 
improve the classification result of support vector machine (SVM). 
All the results reported in the studies above showed that the hybrid 
sampling method is better than the stand-alone methods in terms of 
classification performance. For instance, in Song et al. (2016), the 
proposed hybrid sampling method of under-sampling and over-
sampling achieved 6.4 percent higher than the under-sampling 
method in terms of F-measure across four datasets. Whereas the 
over-sampling in isolation achieved 2 percent lower than the hybrid 
sampling method.

Other types of hybrids entail the combination of one of the sampling 
methods and other methods, such as the combination of SMOTE and 
artificial immune recognition system (AIRS) (Wang & Adrian, 2013). 
Fang et al. (2017) presented a new method dealing with imbalance 
problem for multilabel classification called DEML. DEML transformed 
the whole label set of the multilabel dataset into some subsets and 
each subset was treated as a multilabel dataset with balanced class 
distribution to solve the class imbalance problem. DEML was tested 
using ten multilabel datasets including Bibtex and Enron datasets. The 
results showed that the proposed method was able to outperform CLR 
(Fürnkranz et al., 2008), RAkEL (Tsoumakas et al., 2010), ensemble 
of classifier chains (ECC) (Read et al., 2011), ML-kNN (Zhang et al., 
2007), and BR (Tsoumakas et al., 2007). DEML achieved a higher 
average rating in terms of the micro-F1 and macro-F1 values. Xu et 
al. (2020) presented a hybrid of SMOTE and under-sampling with 
nearest neighbor based on random forest to solve the class imbalance 
problem. Galar et al. (2013) presented a novel approach to improve 
the ensembles of classifiers via a combination of under-sampling and 
boosting techniques known as EUSBoost. Feng et al. (2020) presented 
a hybrid method cluster-based under-sampling and SMOTE (CUSS) 
to handle class imbalance classification. Sun and Lee (2017) presented 
a two-stage multilabel hypernetwork (TSMLHN) method to deal with 
the class imbalance problem in multilabel learning. In TSMLHN, 
class labels were divided into two groups, i.e., common labels and 
imbalanced labels based on their imbalance ratios. The correlations 
between common labels and imbalanced labels were used to improve 
the learning performance of imbalanced labels. TSMLHN was tested 
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using 15 multilabel datasets including Bibtex and Enron datasets. 
The results showed that the proposed method was able to outperform 
BR-SVM (Boutell et al., 2004), ML-kNN (Zhang et al., 2007), CLR 
(Fürnkranz et al., 2008), RAkEL (Tsoumakas et al., 2010), ECC (Read 
et al., 2011), IBLR (Cheng & Hüllermeier, 2009), COCOA (Zhang 
et al., 2020), ML-ROS, ML-RUS, and MLSMOTE (Charte et al., 
2015), and MLHN (Sun et al., 2016). In terms of macro-F, TSMLHN 
achieved higher results than the compared methods on 9 out of 12 
datasets. 

Class imbalance is yet an issue that is highly investigated in recent 
years. When the instances of a specific class outnumber other classes, 
this usually causes a poor result (Feng et al., 2020; García et al., 2018; 
Maurya et al., 2017; Sáez et al., 2016; Zhou et al., 2020). In machine 
learning, presenting an imbalanced dataset usually result in low 
classification accuracy. The reason is because the machine learning 
method can learn very little about the minority class. A true good 
classifier is when the classifier is able to classify a balanced amount 
of classes with high accuracy (Haixiang et al., 2017; Qiao et al., 2017; 
Xu et al., 2020). Generally, the most commonly used approaches to 
handle imbalanced classes are under-sampling and over-sampling and 
they provide competitive results when compared with more complex 
methods found in the literature (Charte et al., 2015; Moreo et al., 2016; 
Sun et al., 2017; Sáez et al., 2016). Over-sampling aims to balance 
classes’ training examples through reproducing the minority class 
examples (last et al., 2017; Tahir et al., 2012; Tanha et al., 2020). On 
the other hand, under-sampling targets to balance the classes’ training 
examples through the elimination of majority class examples (Charte 
et al., 2015; Pereira et al., 2020; Rao & Reddy, 2020; Sáez et al., 
2016). Both of these approaches have limitations. For instance, under-
sampling can discard potentially useful data, while over-sampling can 
increase the likelihood of overfitting. In order to overcome random 
over-sampling and under-sampling limitations for balancing the 
classes, this study proposes a new method by combining Multilabel 
Over-Sampling and Under-Sampling with Class Alignment (ML-
OUSCA). The aim behind the combination is to deal with both the 
limitations of previous approaches in addressing the class imbalance 
problem.
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METHODS

A complete framework of multilabel text classification was set up 
to evaluate the ML-OUSCA method (Figure 1). The framework 
consisted of four phases, namely (i) data pre-processing; (ii) 
resampling and class alignment; (iii) data representation and feature 
selection; and (iv) multilabel classification models. In the framework 
configuration, two baseline resampling algorithms, namely k-nearest 
neighbor under-sampling strategy (KNN-US) and K-means SMOTE, 
were used against the proposed ML-OUSCA algorithm. The learning 
algorithms and ensemble methods were constructed to determine the 
performance of ML-OUSCA against the two baselines of resampling 
model. Figure 1 shows the different combinations of the multilabel 
text classification architecture. The details of each phase are described 
in subsequent subsections.

Figure 1

Methodology for ML-OUSCA in Multilabel Text Classification



432        

Journal of ICT, 20, No. 3 (July) 2021, pp: 423–456

Data Pre-processing 

Pre-processing is an essential stage before the application of machine 
learning approaches. It includes four steps: (i) tokenization, (ii) 
normalization, (iii) stop-word removal, and (iv) stemming. First, 
tokenization aims to turn the text of a certain document into an 
appropriate format for machine learning. The tokenization process 
involves a text to discrete fragmentation in between the separated 
units distinguished by a space or a certain indicator so that every unit 
matches a single word. Second, the normalization step focuses on 
cleaning the data by eliminating noise or unwanted data, such as special 
characters. Third, the stop-word task is applied to discard unnecessary 
words, such as conjunctions, pronouns, and prepositions. Finally, 
stemming refers to figuring out the root or stem of words. Stemming 
extracts the word’s root form from its inflectional or derivational 
form, which is a necessary step for addressing high dimensional and 
sparse data, especially with multilabel text data classification.

Resampling and Class Alignment

This subsection describes two baseline methods, namely under-
sampling: KNN-US method and over-sampling: K-SMOTE method. 
It also describes the new resampling proposed method (ML-
OUSCA) for handling the class imbalance problem in multilabel text 
classification. 

Baseline 1: Under-sampling: KNN-under Sampling Strategy (KNN-
US)

KNN-US that was proposed by Rao and Reddy (2020) is the first 
baseline resampling method used in this work. KNN-US is one of 
the latest developments in under-sampling methods and is considered 
one of the state-of-the-art methods of resampling. The main idea of 
KNN-US is to recognize the mostly misclassified instances by taking 
into account the k-nearest neighbor technique. If all the nearest 
neighboring instances of a particular instance are of other classes, it 
means that the specific record is listed as a noisy or outlier instance 
and may therefore be excluded. The dataset is split into minority 
subsets  and majority subsets , respectively, at the first stage of KNN-
US. P is the minority subset of instances that are much lower when 
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compared to the other classes in the dataset. N is the majority subset 
of instances, which are more than the other classes in percentage. 
Through analyzing the intrinsic properties of the instances, the noisy 
and outlier records can be easily detected. Two main steps are taken 
into account. First (step 1), minority set data cleaning: pi = m′; where 
m′ (0 ≤ m′ ≤ m), if m/2 ≤ m′ < m, then pi is an often-misclassified 
instance. Then,  delete  the  m›  instances  from  the  minority  set. 
Second (step 2), majority set data cleaning: ni = m′; where m’ (0 ≤ 
m′ ≤ m), if m/2 ≤ m′ < m, then pi is a mostly misclassified instance. 
Then, delete the m› instances from the m′ from the majority set (see 
Algorithm 1).

Algorithm 1: KNN-under sampling (KNN-US)
Input: Minority class dataset , Majority class dataset 

P= set of the minority instances 
N= set of the majority instances
m’= the number of majority nearest neighbors
T= the whole training set 
m= the number of nearest neighbors

Step 1. Find mostly misclassified instances pi
1.	 Let us consider
2.	 m’ = the number of majority nearest neighbors
3.	 pi = m’; where m’ (0 ≤ m’≤ m)
4.	 if  ≤ m’ < m then pi is a mostly misclassified instance. Then 

remove the instances m’ from the minority set.

Step 2. Find noisy instances pi’
5.	 pi’ = m’; where m’ (0 ≤ m’ ≤ m)
6.	 If m^’= m, i.e. all the m nearest neighbors of pi are majority 

examples, 
      pi’ is considered to be noise or outliers or missing values and are 

to be n removed.
7.	 ni’ = m’; where m’ (0 ≤ m’≤ m)
8.	 If m^’= m, i.e.all the m nearest neighbors of pi are minority 

examples,
ni’ is considered to be noise or outliers or missing values and are 
to be removed.

Output: A new minority class dataset Sm
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Baseline 2: Over-sampling: K-SMOTE (K-means Synthetic Minority 
Over-sampling Technique) 

Over-sampling aims to increase the number in the training set of 
minority class members. The over-sampling method generates new 
minority class instances to eliminate the harms of skewed distribution. 
To evaluate over-sampling techniques, this work adopted K-SMOTE 
(Last et al., 2017), as shown in Algorithm 2. K-SMOTE is one of the 
recent advances of SMOTE and is considered to be one of the state-
of-the-art over-sampling methods (Last et al., 2017).

K-SMOTE consists of three steps: clustering, filtering, and over-
sampling. In the clustering step, the input space is clustered into k 
groups using k-means clustering. The filtering step selects those 
groups for over-sampling in order to maintain the minority class 
instances with a high percentage.

Algorithm 2: K-SMOTE - Synthetic Minority Over-sampling
Input: X (matrix of observations)

y (target vector)
n (number of samples to be generated)
k (number of clusters to be found by k-means)
irt (imbalance ratio threshold)
knn (number of nearest neighbors considered by SMOTE)
de (exponent used for computation of density; defaults to the 
number of features in X)

begin 
Step 1: Cluster the input space and filter clusters with more minority 
instances than majority instances. 

1.	 	clusters ← k-means(X) 
2.	 filtered clusters ← ∅ 
3.	 for c ∈ clusters do 
4.	 if imbalance ratio < irt then
5.	 filtered clusters ← filtered clusters ∪ {c}
6.	 end 
7.	 end 

Step 2: For each filtered cluster, compute the sampling weight based on 
its minority density. 

8.	 for f ∈ filtered clusters do 
9.	 average minority distance (f) ← mean (Euclidean distances(f)) 

(continued)
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10.	density Factor(f) ← minorityCount(f) 
averageM inorityDistance(f) de 

11.	sparsity Factor(f) ← 1 
densityFactor(f) 

12.	end
 
Step 3: Oversample each filtered cluster using SMOTE. The number of 
samples to be generated is computed using the sampling weight.

13.	Generated samples ← ∅
14.	for f ∈ filtered clusters do
15.	 number of samples ← 
16.	 Generated samples ← generated samples ∪ {SMOTE (f, 

number of samples, knn)}
17.	 end
18.	 return generated samples
19.	end

Proposed Method: ML-OUSCA

An imbalanced dataset is caused by unbalanced data distribution, 
leading to the poor performance of multilabel text classification 
algorithms because the classifiers are more inclined toward the 
majority than the minority data. This study proposes a new method 
based on both under-sampling and over-sampling of imbalanced 
classes. In the method, class labels are grouped into three major 
groups, namely major classes, minor classes, and class alignment 
(balanced classes). Over-sampling entails the random elimination of 
the majority classes to attain balanced distribution. In contrast, under-
sampling involves the replication of the minority classes in achieving 
a balanced distribution with the majority classes. 

For minority classes, new documents will be added based on the size 
of a minority class, average class size, and standard deviation. The 
aim is to increase their sizes to be nearest to the balanced class sizes. 
For majority classes, documents will be deleted. 

In multilabel text classification, let X ∈ Rd be the domain of documents 
and  Y = {l1,l2,...,lq} denote the finite set of labels. D = {(xi, yi)|1 ≤ 
i ≤ N, xi ∈ X ,yi ⊆ Y} denotes the training data that consists of N 
documents and its related labels. yi  is a vector consisting of 1 and 0. 
Documents linked to a certain label are treated as positive or negative 
instances. 
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To overcome random over-sampling and under-sampling limitations, 
the proposed work balances the classes of training examples by 
combining and exploiting the power of over-sampling, under-sampling, 
and non-sampling methods. Under-sampling can only discard a few 
non-useful majority class examples, whereas over-sampling prevents 
overfitting by duplicating few randomly selected minority class 
examples. Furthermore, class alignment (balanced classes) that have 
suitable training examples (number of training examples that are not 
too high or too low) are identified, and their training examples are 
kept without being over-sampling and under-sampling. 

The main idea of the proposed ML-OUSCA algorithm is derived based 
on median outlier detection and Chebyshev’s Theorem (Amidan et al., 
2005). Chebyshev’s Theorem is applied to solve the class imbalanced 
data in multiple works (Amidan et al., 2005; Su & Hsiao, 2007) by 
estimating the likelihood of arriving at a value that differs from the 
mean by less than some degree of standard deviation. It then shows a 
percentage of how far the data is outside the standard deviation from 
the mean. The theory is described in Equation 1:

	 (1 – ( 1
r2

))	 (1)

Chebyshev’s Theorem states that at least (1 – ( 1
r2

)) of the items in 
any dataset will be within r standard deviations of the mean, where r 
is any value greater than 1. Based on Chebyshev’s Theorem, at least 
75 percent of the items must be within r = 2 standard deviations of the 
mean. At least 89 percent of the items must be within r = 3 standard 
deviations of the mean. At least 94 percent of the items must be within 
r = 4 standard deviations of the mean. For data that have a normal 
distribution, approximately 68 percent of the data values will be within 
r = 1 standard deviation of the mean and 95 percent of the data values 
will be within r = 2 standard deviations of the mean. Almost all of the 
items (99%) will be within r = 3 standard deviations of the mean.

The proposed ML-OUSCA algorithm (Algorithm 3) consists of the 
following main steps:

Step 1: Group samples according to their classes.
In this step, the samples in dataset D are rearranged, where 
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each sample  is distributed into sample S, in which the total 
number of samples are equal to Q (number of labels), D = {S1, 
S2, S3,…,Q}. . They are distributed based on their belonging 
to each label.

Step 2: Obtain majority classes, minority classes, and class alignment 
(balanced classes) based on class sizes’ median and quartiles.

This step starts by ranking the groups in D in ascending order. 
Then, the median of the samples is computed using Equation 
2: 

	 median =  (Q + 1)/(2	 (2)
In order to identify the extreme values at the tails of the 
distribution, the samples are divided into quartiles. The 
following quantities (called fences) are calculated using 
Equations 3 and 4:

	 lower inner fence = Quar1 – 1.5IQ 	 (3)
	  upper outer fence = Quar3 + 3.0IQ 	 (4)

where lower inner fence is the median of the values from the 
high values quartile (Quar1). upper inner fence represents the 
median of the values from the low values quartile (Quar3).

	The major (called Majorclasses) and minor labels (called 
Minorclasses) are identified based on the median of (Quar1)  
and (Quar3). The class alignment (called Balancedclasses) that 
do not belong to (Quar1) and (Quar3) are identified and their 
training examples are kept without over-sampling and under-
sampling. In other words, class alignment (balanced classes) 
are classes whose size is not more than or less than one 
standard deviation away from the mean.

 
Step 3: The mean and standard deviation of the class alignment 

(balanced classes) are calculated to determine the reduction 
size of majority classes and increment size of minority 
classes.

In order to recognize the amounts of examples to be added to 
the minority classes and removed from the majority classes, 
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the means and standard deviation of the class alignment 
(balanced classes) are calculated based on Class Mean Size 
(CMS) and cross-sectional standard deviation (CSSD) using 
Equations 5 and 6:

	  Class Mean Size (CMS) = 	 (5)

 where CSSD is the cross-sectional standard deviation.

	 CSSD = 	 (6)

Step 4: Major classes are under-sampled.

In this step for majority classes, new documents will be 
deleted based on the size of a majority class, average class 
size, and standard deviation using Equation 7. The aim is to 
reduce their sizes to be nearest to the balanced class sizes. 

	 Reduct size = |MajorLi| – |CMS + 1 * CSSD| 	 (7)

Step 5: Minor classes are over-sampled.

For the minority classes, new documents will be added based 
on the size of a minority class using Equation 8. In addition, 
cosine similarity between x and other documents are used to 
increase their sizes of minority classes to avoid overfitting. It 
is added based on the size of a minority class, average class 
size, and standard deviation. The aim is to increase their sizes 
to be nearest to the balanced class sizes. 

	 Increment size = |CMS – 1 * CSSD| – |MinorLi| 	 (8)   

Algorithm 3: ML-OUSCA
Input: Dataset: D with m features and q classes 
Outputs: Pre-processed balanced data sample

Algorithm
Step 1 //Group samples according to their classes

1.	 For    do
2.	 amples with Label(j)
3.	 End for

(continued)
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Step 2 //Obtain majority classes, minority classes, and class alignment (balanced 
classes) based on class sizes’ median and quartiles.

4.	 Rank D in ascending order
5.	 Calculate the median using Equation 2 
6.	 Compute the lower inner fence Equation 3
7.	 Compute the upper inner fence Equation 4
8.	 For    do
9.	 If (|Sj| > upper inner fence)
10.		Majorclasses ← Majorclasses + lj
11.	Else If (|Sj|< ower inner fence)
12.		Minorclasses← Minorclasses + lj
13.	Else  
14.		Balancedclasses ← Balancedclasses  + lj
15.	End if
16.	End for

Step 3 // Compute the mean and standard deviation of class alignment (balanced 
classes) for determining reduction size of majority classes and increment size of 
minority classes

17.	Calculate Average Class Size using
18.	Calculate class size standard deviation using cross-sectional standard 

deviation via 6     

Step 4 // Under-sampling of major classes – Set reduction proportion (P)
19.	For Each (MajorL in Majorclasses) do
20.	Reduct size = |MajorLi| – |CMS + 1 * CSSD|  Equation 7
21.		for j = 1 to Reduct size do
22.		x ← random (1;|MajorLi|)
23.		Sj ← deletedocument (x,Sj)
24.	End for

Step 5 // Over-sampling of minor classes 
25.	For Each (MajorL in Majorclasses) do
26.	Increment size = |CMS – 1 * CSSD| – |MinorLi | Equation 8
27.	for j = 1 to Increment size do 
28.	x ← random (1;|MajorLi|) // Get randomly index of a document from 
29.	// using cosine similarity between x and Sj other documents
30.		CX←GET_CLOSETdocuments(x,Sj)
31.	End for

Data Representation and Feature Selection

This section describes the term frequency-inverse document 
frequency (TF-IDF) method, which is used as data representation in 
the experiment. It also demonstrates the used feature selection method 
called normalized pointwise mutual information (NPMI).



440        

Journal of ICT, 20, No. 3 (July) 2021, pp: 423–456

TF.IDF Model

In text classification, the feature values and a vector of features (terms) 
are used to describe a document (Adel et al., 2019; Johnson & Zhang, 
2014; Mao et al., 2019; Taha & Tiun, 2016). TF.IDF is a well-known 
text representation method, which works by assigning a weight to 
each word (feature) (Chen et al., 2016; Mashaan Abed et al., 2013; 
Zubiaga, 2018). It finds the important phrases or words in a specific 
document and calculates the combination of the term frequency and 
inverse document frequency. This scenario entails the frequency of 
the word w in document D. The weight of a term is determined using 
two measures: (1)  – the frequency of a term in a single document; and 
(2)  – the number of documents in the corpus containing the specified 
term. is the total number of documents. From each document, only a 
few terms are selected (terms that have the highest). All other terms 
(terms that have the lowest) are removed from the document. Terms 
in a document are assigned their  using Equation 9:

	 TF.IDF i = TFi · log ( 1
r2

)	 (9)

Normalized Pointwise Mutual Information Features Selection  
 
The mutual information feature selection measures the common 
information that is found between the terms and the labels (Kermani, 
et al., 2019; Lim et al., 2017). The common information MI (t, c) is 
found in between the class c, while the term t is distinct on the level of 
co-occurrence between a feature fj and a class ci (Li et al., 2017; Lim 
et al., 2017). In this work, the NPMI feature selection method was 
adopted to select features for each class according to co-occurrence 
measure between a feature fj and ci a class. NPMI between the feature 
and its classes (Lim et al., 2017) is calculated using Equations 10 and 
11: 

	 NPMI (class = ci,fj) = PMI(ci,fj)
∑fk

 PMI (ci,fk)
	 (10)

	 PMI (class = ci,fj) = lin p(ci,fj)
p(ci) p(fj)

	 (11)
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Multilabel Classification Models  

For evaluation, two multilabel learning models, namely (i) chain of 
classifier (CC) based on a binary relevance method, and (ii) AdaBoost.
MH, were adopted. These approaches were selected because they are 
considered as the state-of-the-art multilabel classification algorithms 
and often used in the works of imbalanced data (Al-Salemi, et al., 
2018; Pant et al., 2018; Taha & Tiun, 2016).

Chain Classifiers Based on Binary Relevance Method 

A combination of multiple classifiers to solve a single task is called 
chained classifiers (CC). The classifiers can be trained independently 
by different datasets (Taha & Tiun, 2016). This work utilized the 
proven binary classifiers, i.e., Naive Bayes (NB) classifier, k-nearest 
neighbor (KNN) classifier, and SVM (Mirończuk & Protasiewicz, 
2018).

AdaBoost.MH. 

AdaBoost.MH constructs several weak classifiers iteratively and 
subsequently groups them into a final classifier that can estimate the 
multiple labels for a particular instance. Through integration and 
training, a boosting algorithm transfers a weak classifier to a strong 
one, which is what the AdaBoost algorithm does as an adaptive 
booster. The AdaBoost algorithm is capable of adjusting the weight 
distribution of the training samples adaptively and selecting the best 
weak classifier out of the sample weight distribution consistently to 
integrate all the weak classifiers and vote by a given weight to build 
a robust classifier. AdaBoost.MH is a multilabel version of AdaBoost 
algorithm (Al-Salemi et al., 2018; Pant et al., 2018).

Evaluation Measurements

The performance of these classification methods is measured 
by classifying the experimental results into four groups using 
Equations 5, 6, and 7, respectively. The first group is true positive 
(TP), entailing correctly assigned documents. The second group 
is false positive (FP), consisting of falsely assigned documents. 
The third is false negative (FN), as the set of documents that 
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were not incorrectly assigned to the class. Finally, the fourth 
is true negative (TN), as the set of documents that were not 
correctly assigned to the class. Besides, this study adopted three 
multilabel evaluation measurements that are commonly used in 
multilabel classification (Sharef et al., 2014; Taha et al., 2020; 
Taha & Tiun, 2016), which can be referred to in Equations 12, 
13, and 14:

i.	 Average precision metric, M_PRECISION, evaluates the 
proportion of the correctly predicted relevant, as shown in 
Equation 12:

	 M_PRECISION = 	 (12)

ii.	 Average recall metric, M-RECALL, calculates the proportion 
of the correctly predicted relevant (true) labels that were 
correctly identified, as shown in Equation 13:

	 M_RECALL = 	 (13)

iii.	 Average F-measure metric,  is the balance mean of both M_
PRECISION and M_RECALL, as shown in Equation 14:

iv.	

	 MFβ  = 	 (14)

RESULTS AND DISCUSSION 

This study evaluated the strengths of the proposed ML-OUSCA 
algorithm in the multilabel text classification context, in which 
AdaBoost.MH and CC were used as the classifiers for multilabel text 
classification. Main experiments involving K-SMOTE, KNN-US, and 
ML-OUSCA had been carried out using the framework of Figure 1. 
In addition, a five-fold cross-validation was utilized to evaluate all the 
experiments. 
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Dataset

As described in Table 1, the Bibtex, Enron, and Reuters-21578 corpus 
datasets, which are publicly available multilabel text classification 
domains, were used. Table 1 shows the number of instances, number 
of attributes, number of labels, cardinality, density, diversity, and 
average imbalance ratio per label (avgIR). Cardinality measured the 
average number of classes for each instance, whereas density entailed 
cardinality divided by the number of labels. Diversity involved the 
percentage of class sets present in the dataset divided by the number 
of possible label sets. The avgIR measured the average degree of 
imbalance of all classes. Therefore, the greater the avgIR, the greater 
the imbalance of the dataset. 

Table 1

 Summary of the Multilabel Text Classification Standard Data

Dataset In-
stances

Attri-
butes Classes Cardi-

nality
Den-
sity

Diver-
sity avgIR

Bibtex  7395 1836 159 2.402 0.015 0.386 12.498
Enron  1702 1001 53 3.378 0.064 0.442 73.953
Reuters-21578 6000 500 103 1.462 0.014 0.135 54.081

Results 

This study conducted two kinds of experiments using AdaBoost and 
CC classifiers for evaluation. The first experiment was conducted 
with baseline models (K-SMOTE and KNN-US) and the proposed 
ML-OUSCA method using AdaBoost for evaluation. 

The second experiment employed the same settings and datasets that 
were used in the first experiment, and CC was applied instead of 
AdaBoost. The experiments were categorized based on the usage of 
AdaBoost and CC. Each experiment had three resampling methods, 
which were K-SMOTE, KNN-US, and ML-OUSCA. 
NPMI was used as a feature selection method with feature sizes 
ranging from 250 to 2250 and with a constant increase of 250 each 
time. Tables 2, 3, and 4 show the selected features (labeled feature 
selection set) for each dataset using both classification methods. 
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Table 2 describes the results of using K-means SMOTE as the over-
sampling method, and Table 3 shows the results of using KNN-US as 
the under-sampling method. Table 4 presents the ML-OUSCA results.

Table 2

Performance (Average F-measure) of Over-sampling Algorithm: 
K-means SMOTE on CC and AdaBoost

Bibtex dataset Enron dataset Reuters-21578 
dataset

Feature 
selection set AdaBoost CC AdaBoost CC AdaBoost CC

250 74.39 75.81 72.57 71.36 69.98 69.85
500 77.99 75.78 74.28 68.52 71.35 71.91
750 78.76 74.31 74.76 72.82 74.68 68.95
1000        80.9 74.2 74.79 72.51 73.11 69.42
1250 81.46 75.2 76.33 72.88 77.23 70.74
1500 80.08 77.61 75.15 73.56 76.34 71.19
1750 80.74 79.35 75.63 73.56 70.2 72.74
2000 78.56 76.15 76.71 72.65 76.9 71.04
2250 80.72 77.79 73.72 71.78 74.61 71.46

Table 3

Performance (Average F-measure) of Under-sampling Algorithm: 
KNN-US on CC and AdaBoost

Bibtex dataset Enron dataset Reuters-21578 
dataset

Feature 
selection set AdaBoost CC AdaBoost CC AdaBoost CC

250 79.95 72.99 71.07 66.16 72.55 73.98
500 75.98 75.39 73.86 73.78 76.96 80.74
750 78.65 78.45 74.57 73.48 77.99 77.43
1000 80.67 84.74     75.9 72.91 81.95 79.06
1250 75.64 76.97 71.59 73.63 83.65 77.07
1500 82.36 82.81 72.35 73.61 79.76 79.35
1750 82.87 80.59 72.89 74.08 79.77 79.6
2000 84.41 77.83 74.8 76.32 77.46 79.19
2250 82 76.73 77.68 80.96 81.05 77.95
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Table 4

Performance (Average F-measure) of the Proposed ML-OUSCA on 
CC and AdaBoost.MH

Bibtex Dataset Enron Dataset Reuters-21578 
Dataset

Feature 
selection set AdaBoost CC AdaBoost CC AdaBoost CC

250 78.2 81.92 82.39 79 78.13 77.17

500 82.72    
81.5 83.02 76.8 79.21 80.86

750 83.57 78.42 83.19 79.72 85.25 76.16
1000 86.84 77.6 83.86 79.77 82.95 78.97
1250 85.45 79.56 84.72 82.6 85.45 77.63
1500 84.21 82.95 82.78 81.6 84.71 79.18
1750 86.05 83.88 84.08 81.04 80.5 81.61
2000 84.51 81.32 86.17 81.13 86.07 78.68
2250 85.03 81.71 84.05 78.69 84.12 79.91

Figure 2

Performance of ML-OUSCA, KNN-US and K-means SMOTE on the 
Multilabel Text Classification Problem (Applied with AdaBoost and 
CC) using Full Size of Datasets
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The results shown in Tables 2, 3, 4, and 5 are summaries of using the 
best sets of features for each classification method on all the datasets. 
Table 5 categorizes the experiment into evaluation models (AdaBoost 
and CC). Each experiment had three resampling methods (labeled K- 
means SMOTE, KNN-US, and ML-OUSCA) applied to each of the 
described datasets in Table 1. 

Table 5 

Summary of K- means SMOTE, KNN-US, and ML-OUSCA Best 
Results Given in Tables 2, 3, and 4.

Clas-
sification 
method

Resampling 
method

FS sets
Bibtex/ Enron/ 

Reuters

Bibtex 
Dataset

Enron 
Dataset

Reuters 
Dataset

AdaBoost

K- means 
SMOTE 1250/ 2000/ 1750 81.46 76.71 77.23

KNN-US 2000/ 2550/ 1250 84.41 77.68 83.65
ML-OUSCA 1000/ 2000/ 1750 86.84 86.17 86.07

CC

K- means 
SMOTE 1750/ 1500/ 1750 79.35 73.56 72.74

KNN-US 1000/ 2250/ 500 84.74 80.96 80.74
ML-OUSCA 1750/ 1500/ 1750 83.88 82.6 81.61

DISCUSSION

The obtained results are summarized in Figure 2, presenting the effect of 
the proposed ML-OUSCA method on the multilabel text classification 
models based on all the datasets. It compared the classification 
accuracy of ML-OUSCA and the baseline methods, namely KNN-
US and K-means SMOTE. The results also demonstrated that the 
multilabel text classification models could be improved further if the 
inherited imbalance problem was solved. 

The results obtained by ML-OUSCA with AdaBoost.MH was stable 
(consistently high) regardless of the imbalance problem. As seen in Figure 
2, though the avgIR value of the Enron dataset was more than 70, ML-
OUSCA obtained F-measure of 86.17 percent using AdaBoost and 82.6 
percent using CC, respectively. Therefore, the proposed ML-OUSCA 
method was capable of handling imbalanced text problem, even with 
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high diversity in the size of imbalanced data (i.e., large value of avgIR). 
Figure 2 shows that ML-OUSCA significantly outperformed 
the other baseline sampling methods on all the multilabel text 
classification models (AdaBoost.MH and CC). Thus, to verify 
whether the above observations were statistically significant, a 
paired t-test was carried out involving the attained results of the 
proposed method and the two baseline methods on all datasets. 
First, the t-test result obtained between the proposed ML-OUSCA 
and baseline method KNN-US was p = 0.000388. Second, the 
t-test between results obtained by the proposed ML-OUSCA 
and baseline method K-means SMOTE was p = 0.009999. 
However, in order to conclude the t-test, a significance level of 
0.05 was employed in this study. Based on the archived p values, 
it can be concluded that the results of the proposed method were 
significantly better than those of the baseline methods. 

In analyzing the cause for these results, it is believed that KNN-
US might increase the likelihood of overfitting, whereas K-means 
SMOTE method might lead to overgeneralization due to disregarding 
the majority class instances. Therefore, ML-OUSCA could provide 
an effective solution for the problem of classifying the imbalanced 
dataset to overcome several limitations of the baseline methods, such 
as losing important information and adding trivial information. The 
proposed method drew a new training set by over-sampling small 
size classes and under-sampling big size classes according to training 
examples by combining and exploiting the power of over-sampling, 
under-sampling, and non-sampling methods. The results showed 
that the classification performances of ML-OUSCA significantly 
outperformed the other baseline sampling methods in all datasets.
Besides, with the consistently higher results of AdaBoost.MH as 
compared to CC in all of the experiments (see Table 5) across all the 
datasets, AdaBoost.MH should be chosen as the ensemble classifier. 
This is because the AdaBoost.MH model aims to reduce the number 
of misclassified labels. It works by setting the weights to the training 
samples and classifiers in order to ensure the accuracy of the classification.  

In other words, it can be concluded that for the best model for 
multilabel text classification, given the choice of baseline resampling 
and the proposed ML-OUSCA method to tackle imbalanced dataset 
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and ensemble classifiers of AdaBoost.MH and CC, one should choose 
the proposed ML-OUSCA with AdaBoost.MH as the classifier.

CONCLUSION

This study presented a new method, ML-OUSCA, to solve the class 
imbalance problem in multilabel classification. Instead of using all 
training instances, the proposed method constructed a new training set 
by using over-sampling on the minority classes, and under-sampling 
on the majority classes. Over-sampling and under-sampling were used 
to avoid the curse of class imbalance problem, a common problem 
in a majority of large-scale multilabel classification problems. The 
proposed ML-OUSCA was applied on well-known multilabel text 
classification datasets, namely Reuters-21578, Bibtex, and Enron. The 
results indicated the superiority of the proposed ML-OUSCA method 
as opposed to the baseline methods identified in the literature. Based 
on the results, the study concludes that combining multilabel over-
sampling and under-sampling can help to achieve higher classification 
accuracy than using any of the above methods isolation. 
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