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ABSTRACT

Simultaneous multiple labeling of documents, also known as multilabel
text classification, will not perform optimally if the class is highly
imbalanced. Class imbalance entails skewness in the fundamental data
for distribution that leads to more difficulty in classification. Random
over-sampling and under-sampling are common approaches to solve
the class imbalance problem. However, these approaches have several
drawbacks; under-sampling is likely to dispose of useful data, whereas
over-sampling can heighten the probability of overfitting. Therefore,
a new method that can avoid discarding useful data and overfitting
problems is needed. This study proposed a method to tackle the class
imbalance problem by combining multilabel over-sampling and
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under-sampling with class alignment (ML-OUSCA). In the proposed
ML-OUSCA, instead of using all the training instances, it drew a new
training set by over-sampling small size classes and under-sampling
big size classes. To evaluate the proposed ML-OUSCA, evaluation
metrics of average precision, average recall, and average F-measure
on three benchmark datasets, namely Reuters-21578, Bibtex, and
Enron datasets, were performed. Experimental results showed that
the proposed ML-OUSCA outperformed the chosen baseline random
resampling approaches: K-means SMOTE and KNN-US. Therefore,
based on the results, it can be concluded that designing a resampling
method based on class imbalance together with class alignment will
improve multilabel classification even better than just the random
resampling method.

Keywords: Data mining, multilabel text classification, class
imbalance problem, resampling method, class alignment.

INTRODUCTION

Multilabel classification is a task applied in various data mining
applications, such labeling video, images, music, and texts.
Multilabel classification assigns documents to several classes at
the same time based on their belongings. This task differs from the
traditional single label, which associates each document to one class.
The classification task of the single label can also be considered as
multiclass or binary classification. In multiclass classification, each
document can belong to more than one label category, but only one
label category is assigned. Whereas, in the multilabel classification,
it is a generalization of the multiclass and binary classification, as
it does not enforce any limits to the number of components that
are held at the outputs (Charte et al., 2013; Siblini et al., 2019).
Methods of multilabel text classification suffer from a high level of
class imbalance, and because of that, they will not work efficiently (Ali
et al., 2019; Glazkova, 2020; Japkowicz & Stephen, 2002; Koziarski
et al., 2020). The main issue in class imbalance occurs when a certain
class has an extremely higher number of instances than other classes
(Tanha et al., 2020; Weng et al., 2018; Zhang et al., 2020). In actual
conditions, skewness often occurs in the distribution of examples
of certain classes that rarely appear. Such an issue affects learning
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algorithms leaning toward the majority classes. Numerous solutions
for imbalanced classification have been proposed by Garcia et al.
(2018), Pereira et al. (2020), Patel et al. (2020), Qiao et al. (2017),
and Song et al. (2016). However, previous works principally focused
on binary classifications that were less complex than multilabel
imbalanced classification (Cascar et al., 2019; Saez et al., 2016).
Results of earlier studies have shown that random over-sampling and
under-sampling are the most efficient approaches to solve imbalanced
classifications (Garcia et al., 2018; Saez et al., 2016; Zhang et al.,
2020). However, the approaches have several drawbacks; under-
sampling is likely to dispose of useful data, whereas over-sampling
can heighten the probability of overfitting (Charte et al., 2015; Qiao et
al., 2017; Saez et al., 2016). Therefore, a new method that can avoid
discarding useful data and overfitting problems is needed.

This study presents a proposed method on handling the class imbalance
problem for a multilabel learning model on text classification based on
a new sampling and class alignment. The proposed method combines
multilabel over-sampling and under-sampling, and class alignment,
which is called the ML-OUSCA algorithm. This combination aims to
deal with the limitations of previous approaches in tackling the class
imbalance problem. Likewise, this study aims to balance the classes in
the training set examples by joining and exploiting the power of over-
sampling, under-sampling, and non-sampling methods. However, the
proposed method draws a new training set using under-sampling by
only discarding a few non-useful majority class samples from the set.
The discarding strategy in the under-sampling method is based on
the interdependency between the training set samples. By contrast,
over-sampling is performed by duplicating few randomly selected
minority class samples from the dataset. In addition, the samples in
the classes that are not too high or low in their numbers are identified
as class alignment (balanced classes) and kept without resorting to
over-sampling and under-sampling.

This work is henceforth structured into five sections. The next section
presents a short review of previous related studies. The proposed
method and its assessment are presented in the following section.
The fourth section describes the carried-out experiments. Finally, the
proposed method is concluded in the last section.
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RELATED WORKS

Multilabel class imbalance is a highlighted topic among the artificial
intelligence (AI) community in recent years (Daniels & Metaxas,
2017). Class imbalance also affects multilabel learning, whereby the
high and low instance distributions of each label are largely imbalanced
and broadly varied. The situation is exacerbated in the presence of
numerous labels and low densities (Maheshwari et al., 2017; Zhang et
al., 2020). Besides, the level of imbalance among multilabel datasets
is greater than the binary or multiclass datasets (Charte et al., 2013).

Class imbalance is generally resolved using the under-sampling method.
For instance, Rao and Reddy (2020) presented the under-sampling
strategy (i.e., KNN-US) to reduce the less prominent instances from
majority subsets to solve imbalanced dataset. The proposed method
in Rao and Reddy (2020) identified the mostly misclassified instances
based on the k-nearest neighbor (KNN) technique. Onan (2019)
presented consensus clustering-based under-sampling method to lessen
the number of instances of the majority class. Lin et al. (2017) presented
two under-sampling strategies that also utilize the clustering technique.
Zhang et al. (2018) proposed an approach based on the stacking and
inverse random under-sampling methods. Zhang et al. (2018) used the
inverse random under-sampling method to under-sample the majority
class samples and applied the stacking approach to separate and classify
the minority from the majority class. The inverse random under-
sampling method was also employed by Tahir et al. (2012) before
applying an ensemble classifier. A bidirectional resampling method
(i.e., multilabel decoupling bidirectional resampling (ML-DBR)) at
the data level was proposed by Zhou et al. (2020). The disparity of
the labels was minimized by decoupling the extremely concurrent data
of the majority and minority labels and by calculating the effect of
the labels during resampling. The independence of the instances was
then guaranteed. However, the ML-DBR approach was tested using
seven benchmark multilabel datasets, including the Enron text dataset.
The results showed that the proposed method was able to outperform
several methods, namely REMEDIAL, REMEDIAL-HwR-ROS, and
REMEDIAL-HwR-HUS (Charte et al., 2019). Three classifiers were
used to classify the dataset, which were label powerset (LP), binary
relevance (BR), and multilabel k-nearest neighbor (ML-kNN) (Zhang
& Zhou, 2007). In terms of Micro-F values, the usage of ML-DBR
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helped the employed classifiers to achieve higher results than the
compared methods on five out of seven datasets. Kim et al. (2019)
presented the principles of under-sampling technique to solve a class
imbalance problem. Pereira et al. (2020) presented a Multilabel Tomek
Link (MLTL) based on the Tomek Link resampling method. This
under-sampling algorithm detected and eliminated the so-called Tomek
links from the multilabel dataset. If they were the nearest neighbors
but belonged to different groups, a pair of instances was considered a
Tomek link. In addition to being a subsampling method, MLTL could
be implemented in a post-process cleaning stage for the ML-SMOTE
method. According to Pereira et al. (2020), the justification for using it
as a post-process cleaning stage relied on the fact that the class groups
were typically not well specified after applying ML-SMOTE, i.e., some
instances from the majority class might invade the space of the minority
class or vice versa. Consequently, the feature space could be cleaned
and the edges between classes smoothed by the MLTL method.

Over-sampling is the second widely used method to resolve class
imbalance. Sdez et al. (2016) applied this method in analyzing
class characteristics, whereby the subsets of certain instances were
identified in each class and increased individually. A novel reverse-
nearest neighborhood-based over-sampling method for the class
imbalance of a multilabel dataset was introduced by Sadhukhan and
Palit (2019). All those points that included the query point as one
of their neighbors had the reverse nearest neighborhood of a query
point. However, the proposed method was tested using ten mutilabel
datasets including the Enron text dataset. The results showed that the
proposed method was able to outperform label-specific features (LIFT)
(Zhang & Wu, 2014), random k-labelset (RAKEL) (Tsoumakas et al.,
2010), improved baseline restoration (IBLR) (Cheng & Hiillermeier,
2009), cross-coupling aggregation (COCOA) (Zhang et al., 2020),
calibrated label ranking (CLR) (Fiirnkranz et al., 2008), synthetic
minority over-sampling technique (SMOTE) (Chawla et al., 2002),
adaptive synthetic sampling (ADASYN) (He et al., 2008), and
USAM (Fernandez et al., 2017). In terms of F-measure, the proposed
method achieved higher results than the compared methods on nine
out of ten datasets. Last et al. (2017) presented a combination of
k-means clustering and SMOTE over-sampling, which was called
K-means SMOTE. The proposed method avoided noise generation
and effectively overcame the imbalance problem between and within
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classes. Another over-sampling technique was introduced by Abdi
and Hashemi (2016) based on the Mahalanobis distance. Moreo et
al. (2016) presented a new over-sampling method, i.e., distributional
random over-sampling (DRO), explicitly designed to identify the
imbalanced text dataset for which the distributional hypothesis
held, according to which the importance of a feature was somehow
determined by its distribution in large data corporations. The proposed
method generated new random minority class synthetic documents by
exploiting the distributional properties of the terms in the collection.
However, the proposed method was evaluated on three mutilabel
datasets, including Reuters-21578 text dataset. The proposed method
was compared against three methods, namely random over-sampling
(RO) and SMOTE (Chawla et al., 2002), BSMOTE (Han et al., 2005)
and DECOM (Chen et al., 2011). The proposed method obtained
higher results than the comparative methods on all datasets in terms of
F-measure. Li et al. (2014) presented an over-sampling approach that
used the clustering technique and the Euclidean distance. Meanwhile,
Rivera (2017) introduced an over-sampling approach based on noise
reduction and selective sampling of the minority class to achieve
good predictive abilities concerning its membership. Another widely
used modification of over-sampling was the synthetic minority over-
sampling technique (SMOTE) (Charte et al., 2015; Diez-Pastor et al.,
2015; Jian et al., 2016). Koziarski et al. (2019) presented a radial-
based over-sampling (RBO) method, which could find areas where
artificial organisms of the minority class must be created based on
estimating the imbalanced distribution of defects with radial basis
functions. Two over-sampling methods, namely borderline-SMOTE]1
and borderline-SMOTEZ2, were presented by Han et al. (2005) to over-
sample the minority examples around the borderline.

The hybrid sampling method proposed by several studies (Dubey
et al., 2014; Shi et al., 2018; Song et al., 2016; Wang, 2014) is a
combination of the under-sampling and over-sampling techniques.
This method showed promising results in comparison with the stand-
alone methods. Dubey et al. (2014) carried out a systematical analysis
of various sampling techniques by studying the effectiveness of
different rates and types of under-sampling and over-sampling and
a combination of both methods. Shi et al. (2018) proposed an under-
sampling that selected the informative instances and features from the
original dataset, whereas over-sampling balanced the majority class
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instances. Song et al. (2016) proposed a hybrid of SMOTE and under-
sampling technique by applying k-means. Wang (2014) proposed a
simple integration between under-sampling and over-sampling to
improve the classification result of support vector machine (SVM).
All the results reported in the studies above showed that the hybrid
sampling method is better than the stand-alone methods in terms of
classification performance. For instance, in Song et al. (2016), the
proposed hybrid sampling method of under-sampling and over-
sampling achieved 6.4 percent higher than the under-sampling
method in terms of F-measure across four datasets. Whereas the
over-sampling in isolation achieved 2 percent lower than the hybrid
sampling method.

Other types of hybrids entail the combination of one of the sampling
methods and other methods, such as the combination of SMOTE and
artificial immune recognition system (AIRS) (Wang & Adrian, 2013).
Fang et al. (2017) presented a new method dealing with imbalance
problem for multilabel classification called DEML. DEML transformed
the whole label set of the multilabel dataset into some subsets and
each subset was treated as a multilabel dataset with balanced class
distribution to solve the class imbalance problem. DEML was tested
using ten multilabel datasets including Bibtex and Enron datasets. The
results showed that the proposed method was able to outperform CLR
(Fiirnkranz et al., 2008), RAKEL (Tsoumakas et al., 2010), ensemble
of classifier chains (ECC) (Read et al., 2011), ML-kNN (Zhang et al.,
2007), and BR (Tsoumakas et al., 2007). DEML achieved a higher
average rating in terms of the micro-F1 and macro-F1 values. Xu et
al. (2020) presented a hybrid of SMOTE and under-sampling with
nearest neighbor based on random forest to solve the class imbalance
problem. Galar et al. (2013) presented a novel approach to improve
the ensembles of classifiers via a combination of under-sampling and
boosting techniques known as EUSBoost. Feng et al. (2020) presented
a hybrid method cluster-based under-sampling and SMOTE (CUSS)
to handle class imbalance classification. Sun and Lee (2017) presented
a two-stage multilabel hypernetwork (TSMLHN) method to deal with
the class imbalance problem in multilabel learning. In TSMLHN,
class labels were divided into two groups, i.e., common labels and
imbalanced labels based on their imbalance ratios. The correlations
between common labels and imbalanced labels were used to improve
the learning performance of imbalanced labels. TSMLHN was tested
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using 15 multilabel datasets including Bibtex and Enron datasets.
The results showed that the proposed method was able to outperform
BR-SVM (Boutell et al., 2004), ML-kNN (Zhang et al., 2007), CLR
(Fiirnkranz et al., 2008), RAKEL (Tsoumakas et al., 2010), ECC (Read
et al., 2011), IBLR (Cheng & Hiillermeier, 2009), COCOA (Zhang
et al., 2020), ML-ROS, ML-RUS, and MLSMOTE (Charte et al.,
2015), and MLHN (Sun et al., 2016). In terms of macro-F, TSMLHN
achieved higher results than the compared methods on 9 out of 12
datasets.

Class imbalance is yet an issue that is highly investigated in recent
years. When the instances of a specific class outnumber other classes,
this usually causes a poor result (Feng et al., 2020; Garcia et al., 2018;
Maurya et al., 2017; Saez et al., 2016; Zhou et al., 2020). In machine
learning, presenting an imbalanced dataset usually result in low
classification accuracy. The reason is because the machine learning
method can learn very little about the minority class. A true good
classifier is when the classifier is able to classify a balanced amount
of classes with high accuracy (Haixiang et al., 2017; Qiao et al., 2017,
Xu et al., 2020). Generally, the most commonly used approaches to
handle imbalanced classes are under-sampling and over-sampling and
they provide competitive results when compared with more complex
methods found in the literature (Charte et al., 2015; Moreo et al., 2016;
Sun et al., 2017; Saez et al., 2016). Over-sampling aims to balance
classes’ training examples through reproducing the minority class
examples (last et al., 2017; Tahir et al., 2012; Tanha et al., 2020). On
the other hand, under-sampling targets to balance the classes’ training
examples through the elimination of majority class examples (Charte
et al., 2015; Pereira et al., 2020; Rao & Reddy, 2020; Saez et al.,
2016). Both of these approaches have limitations. For instance, under-
sampling can discard potentially useful data, while over-sampling can
increase the likelihood of overfitting. In order to overcome random
over-sampling and under-sampling limitations for balancing the
classes, this study proposes a new method by combining Multilabel
Over-Sampling and Under-Sampling with Class Alignment (ML-
OUSCA). The aim behind the combination is to deal with both the
limitations of previous approaches in addressing the class imbalance
problem.
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METHODS

A complete framework of multilabel text classification was set up
to evaluate the ML-OUSCA method (Figure 1). The framework
consisted of four phases, namely (i) data pre-processing; (ii)
resampling and class alignment; (iii) data representation and feature
selection; and (iv) multilabel classification models. In the framework
configuration, two baseline resampling algorithms, namely k-nearest
neighbor under-sampling strategy (KNN-US) and K-means SMOTE,
were used against the proposed ML-OUSCA algorithm. The learning
algorithms and ensemble methods were constructed to determine the
performance of ML-OUSCA against the two baselines of resampling
model. Figure 1 shows the different combinations of the multilabel
text classification architecture. The details of each phase are described
in subsequent subsections.

Figure 1

Methodology for ML-OUSCA in Multilabel Text Classification

Imbalanced Multilabel Text Classification Dataset

T

[ Phase |: Data Pre-processing J

L 2

Phase 2: Resampling and class alignment

2) Under-sampling baseline: KNN-US

1) Over-sampling baseline: k-means SMOTE
3) Proposed method: ML-OUSCA

L 2

Phase 3: Data representation and feature selection

TFIDF
NPIM

Phase 4: Multilabel classificationmethods
Chain of Classifiers (CC)
AdaBoost MH

L 2

[ Evaluation: Average precision, average recall, }

average f-Measure
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Data Pre-processing

Pre-processing is an essential stage before the application of machine
learning approaches. It includes four steps: (i) tokenization, (ii)
normalization, (iii) stop-word removal, and (iv) stemming. First,
tokenization aims to turn the text of a certain document into an
appropriate format for machine learning. The tokenization process
involves a text to discrete fragmentation in between the separated
units distinguished by a space or a certain indicator so that every unit
matches a single word. Second, the normalization step focuses on
cleaning the data by eliminating noise or unwanted data, such as special
characters. Third, the stop-word task is applied to discard unnecessary
words, such as conjunctions, pronouns, and prepositions. Finally,
stemming refers to figuring out the root or stem of words. Stemming
extracts the word’s root form from its inflectional or derivational
form, which is a necessary step for addressing high dimensional and
sparse data, especially with multilabel text data classification.

Resampling and Class Alignment

This subsection describes two baseline methods, namely under-
sampling: KNN-US method and over-sampling: K-SMOTE method.
It also describes the new resampling proposed method (ML-
OUSCA) for handling the class imbalance problem in multilabel text
classification.

Baseline 1: Under-sampling: KNN-under Sampling Strategy (KNN-
Us)

KNN-US that was proposed by Rao and Reddy (2020) is the first
baseline resampling method used in this work. KNN-US is one of
the latest developments in under-sampling methods and is considered
one of the state-of-the-art methods of resampling. The main idea of
KNN-US is to recognize the mostly misclassified instances by taking
into account the k-nearest neighbor technique. If all the nearest
neighboring instances of a particular instance are of other classes, it
means that the specific record is listed as a noisy or outlier instance
and may therefore be excluded. The dataset is split into minority
subsets and majority subsets , respectively, at the first stage of KNN-
US. P is the minority subset of instances that are much lower when
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compared to the other classes in the dataset. N is the majority subset
of instances, which are more than the other classes in percentage.
Through analyzing the intrinsic properties of the instances, the noisy
and outlier records can be easily detected. Two main steps are taken
into account. First (step 1), minority set data cleaning: pi = m'; where
m’' (0 <m’ <m), if m/2 <m’ <m, then pi is an often-misclassified
instance. Then, delete the m» instances from the minority set.
Second (step 2), majority set data cleaning: ni = m’; where m’ (0 <
m’' <m), if m/2 <m’ <m, then pi is a mostly misclassified instance.
Then, delete the m» instances from the m’ from the majority set (see
Algorithm 1).

Algorithm 1: KNN-under sampling (KNN-US)

Input: Minority class dataset , Majority class dataset
P= set of the minority instances
N= set of the majority instances
m’= the number of majority nearest neighbors
T= the whole training set
m= the number of nearest neighbors

Step 1. Find mostly misclassified instances pi

Let us consider

m’ = the number of majority nearest neighbors

pi=m’; where m’ (0 <m’<m)

if <m’<m then pi is a mostly misclassified instance. Then
remove the instances m’ from the minority set.

PwOnNRE

Step 2. Find noisy instances pi’

5. pi’=m’; where m’ (0 <m’<m)

6. Ifm~’=m, i.e. all the m nearest neighbors of pi are majority
examples,

pi’ is considered to be noise or outliers or missing values and are

to be n removed.

7. ni’=m’; where m’ (0 < m’<m)

8. If m"’=m, i.e.all the m nearest neighbors of pi are minority
examples,
ni’ is considered to be noise or outliers or missing values and are
to be removed.

Output: A new minority class dataset Sm
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Baseline 2: Over-sampling: K-SMOTE (K-means Synthetic Minority
Over-sampling Technique)

Over-sampling aims to increase the number in the training set of
minority class members. The over-sampling method generates new
minority class instances to eliminate the harms of skewed distribution.
To evaluate over-sampling techniques, this work adopted K-SMOTE
(Last et al., 2017), as shown in Algorithm 2. K-SMOTE is one of the
recent advances of SMOTE and is considered to be one of the state-
of-the-art over-sampling methods (Last et al., 2017).

K-SMOTE consists of three steps: clustering, filtering, and over-
sampling. In the clustering step, the input space is clustered into k
groups using k-means clustering. The filtering step selects those
groups for over-sampling in order to maintain the minority class
instances with a high percentage.

Algorithm 2: K-SMOTE - Synthetic Minority Over-sampling

Input: X (matrix of observations)
y (target vector)
n (number of samples to be generated)
k (number of clusters to be found by k-means)
irt (imbalance ratio threshold)
knn (number of nearest neighbors considered by SMOTE)
de (exponent used for computation of density; defaults to the
number of features in X)

begin

Step 1: Cluster the input space and filter clusters with more minority
instances than majority instances.

clusters «— k-means(X)

filtered clusters < @

for ¢ € clusters do

if imbalance ratio < irt then

filtered clusters « filtered clusters U {c}

end

end

Nk L=

Step 2: For each filtered cluster, compute the sampling weight based on
its minority density.

8. for f € filtered clusters do

9. average minority distance (f) «— mean (Euclidean distances(f))

(continued)
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minorityCount(f)
averageM inorityDistance(f) de

10. density Factor(f) «

11. sparsity Factor(f) «— ~densityFactor(D)
12.end
Step 3: Oversample each filtered cluster using SMOTE. The number of
samples to be generated is computed using the sampling weight.
13. Generated samples «— @
14. for f € filtered clusters do
15. number of samples «—
16. Generated samples «— generated samples U {SMOTE (f,
number of samples, knn)}
17. end
18. return generated samples
19.end

Proposed Method: ML-OUSCA

An imbalanced dataset is caused by unbalanced data distribution,
leading to the poor performance of multilabel text classification
algorithms because the classifiers are more inclined toward the
majority than the minority data. This study proposes a new method
based on both under-sampling and over-sampling of imbalanced
classes. In the method, class labels are grouped into three major
groups, namely major classes, minor classes, and class alignment
(balanced classes). Over-sampling entails the random elimination of
the majority classes to attain balanced distribution. In contrast, under-
sampling involves the replication of the minority classes in achieving
a balanced distribution with the majority classes.

For minority classes, new documents will be added based on the size
of a minority class, average class size, and standard deviation. The
aim is to increase their sizes to be nearest to the balanced class sizes.
For majority classes, documents will be deleted.

In multilabel text classification, let X € R4 be the domain of documents
and Y = {I,L,,....],} denote the finite set of labels. D = {(x;, y)|l <
1 <N, x, € X,y,E€ Y} denotes the training data that consists of N
documents and its related labels. y; is a vector consisting of 1 and 0.
Documents linked to a certain label are treated as positive or negative
instances.
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To overcome random over-sampling and under-sampling limitations,
the proposed work balances the classes of training examples by
combining and exploiting the power of over-sampling, under-sampling,
and non-sampling methods. Under-sampling can only discard a few
non-useful majority class examples, whereas over-sampling prevents
overfitting by duplicating few randomly selected minority class
examples. Furthermore, class alignment (balanced classes) that have
suitable training examples (number of training examples that are not
too high or too low) are identified, and their training examples are
kept without being over-sampling and under-sampling.

The main idea of the proposed ML-OUSCA algorithm is derived based
on median outlier detection and Chebyshev’s Theorem (Amidan et al.,
2005). Chebyshev’s Theorem is applied to solve the class imbalanced
data in multiple works (Amidan et al., 2005; Su & Hsiao, 2007) by
estimating the likelihood of arriving at a value that differs from the
mean by less than some degree of standard deviation. It then shows a
percentage of how far the data is outside the standard deviation from
the mean. The theory is described in Equation 1:

(1-(1) (1)

Chebyshev’s Theorem states that at least (1 — (%2)) of the items in
any dataset will be within r standard deviations of the mean, where r

is any value greater than 1. Based on Chebyshev’s Theorem, at least
75 percent of the items must be within r = 2 standard deviations of the
mean. At least 89 percent of the items must be within r = 3 standard
deviations of the mean. At least 94 percent of the items must be within
r = 4 standard deviations of the mean. For data that have a normal
distribution, approximately 68 percent of the data values will be within
r = 1 standard deviation of the mean and 95 percent of the data values
will be within r = 2 standard deviations of the mean. Almost all of the
items (99%) will be within r = 3 standard deviations of the mean.

The proposed ML-OUSCA algorithm (Algorithm 3) consists of the
following main steps:

Step 1: Group samples according to their classes.
In this step, the samples in dataset D are rearranged, where
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each sample is distributed into sample S, in which the total
number of samples are equal to O (number of labels), D = {S,
S, S, ....,0} . They are distributed based on their belonging
to each label.

Step 2: Obtain majority classes, minority classes, and class alignment

Step 3:

(balanced classes) based on class sizes’ median and quartiles.

This step starts by ranking the groups in D in ascending order.
Then, the median of the samples is computed using Equation
2:

median= (Q + 1)/(2 2)
In order to identify the extreme values at the tails of the
distribution, the samples are divided into quartiles. The
following quantities (called fences) are calculated using
Equations 3 and 4:

lower inner fence = Quar, — 1.51Q 3)
upper outer fence = Quar, + 3.01Q 4

where lower inner fence is the median of the values from the
high values quartile (Quar,). upper inner fence represents the
median of the values from the low values quartile (Quar,).

The major (called Major
Minor

asses)  and minor labels (called
asses) are identified based on the median of (Quar,)
and (Quar;). The class alignment (called Balanced ) that
do not belong to (Quar,) and (Quar;) are identified and their
training examples are kept without over-sampling and under-
sampling. In other words, class alignment (balanced classes)
are classes whose size is not more than or less than one
standard deviation away from the mean.

The mean and standard deviation of the class alignment
(balanced classes) are calculated to determine the reduction
size of majority classes and increment size of minority
classes.

In order to recognize the amounts of examples to be added to
the minority classes and removed from the majority classes,
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the means and standard deviation of the class alignment
(balanced classes) are calculated based on Class Mean Size
(CMS) and cross-sectional standard deviation (CSSD) using
Equations 5 and 6:

: _ I8
Class Mean Size (CMS) = ==L ®)]
q
where CSSD is the cross-sectional standard deviation.

CSSD = El“(ls;t%lm) ©

Step 4: Major classes are under-sampled.

Step 5:

In this step for majority classes, new documents will be
deleted based on the size of a majority class, average class
size, and standard deviation using Equation 7. The aim is to
reduce their sizes to be nearest to the balanced class sizes.
Reduct size = [MajorL,| — |CMS + 1 * CSSD]| @)

Minor classes are over-sampled.

For the minority classes, new documents will be added based
on the size of a minority class using Equation 8. In addition,
cosine similarity between x and other documents are used to
increase their sizes of minority classes to avoid overfitting. It
is added based on the size of a minority class, average class
size, and standard deviation. The aim is to increase their sizes
to be nearest to the balanced class sizes.

Increment size = |CMS — 1 * CSSD| — |MinorL,| ®)

Algorit

hm 3: ML-OUSCA

Input: Dataset: D with m features and q classes
Outputs: Pre-processed balanced data sample

Algorithm
Step 1 //Group samples according to their classes

1. For do
2. amples with Label(j)
3. End for

438

(continued)



Journal of ICT, 20, No. 3 (July) 2021, pp: 423—456

Step 2 //Obtain majority classes, minority classes, and class alignment (balanced
classes) based on class sizes’ median and quartiles.

4. Rank D in ascending order

5. Calculate the median using Equation 2

6. Compute the lower inner fence Equation 3
7. Compute the upper inner fence Equation 4
8

9

For do

. If (S|} > upper inner fence)
10. Major,, ... < Majory, . 1
11. Else If (|S;|< ower inner fence)
12. Minorclasscs(_ Minorclasscs + lj
13. Else
14. Balanced,,. < Balanced,, ., + 1,
15. End if
16. End for

Step 3 // Compute the mean and standard deviation of class alignment (balanced
classes) for determining reduction size of majority classes and increment size of
minority classes

17. Calculate Average Class Size using
18. Calculate class size standard deviation using cross-sectional standard
deviation via 6

Step 4 // Under-sampling of major classes — Set reduction proportion (P)
19. For Each (Major, in Major,,..) do
20. Reduct size = [MajorL,| — |[CMS + 1 * CSSD| Equation 7
21. for j =1 to Reduct size do
22. x «—random (1;/MajorL,|)
23. S, « deletedocument (x,S;)
24. End for

Step 5 // Over-sampling of minor classes
25. For Each (Major, in Major,, . ) do
26. Increment size = |[CMS — 1 * CSSD| — |MinorL, | Equation 8
27. for j =1 to Increment size do
28. x < random (1;|MajorL,|) // Get randomly index of a document from
29. // using cosine similarity between x and S, other documents
30. CX«—GET_CLOSETdocuments(x,S’)
31. End for

Data Representation and Feature Selection

This section describes the term frequency-inverse document
frequency (TF-IDF) method, which is used as data representation in
the experiment. It also demonstrates the used feature selection method
called normalized pointwise mutual information (NPMI).
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TEIDF Model

In text classification, the feature values and a vector of features (terms)
are used to describe a document (Adel et al., 2019; Johnson & Zhang,
2014; Mao et al., 2019; Taha & Tiun, 2016). TE.IDF is a well-known
text representation method, which works by assigning a weight to
each word (feature) (Chen et al., 2016; Mashaan Abed et al., 2013;
Zubiaga, 2018). It finds the important phrases or words in a specific
document and calculates the combination of the term frequency and
inverse document frequency. This scenario entails the frequency of
the word w in document D. The weight of a term is determined using
two measures: (1) —the frequency of a term in a single document; and
(2) —the number of documents in the corpus containing the specified
term. is the total number of documents. From each document, only a
few terms are selected (terms that have the highest). All other terms
(terms that have the lowest) are removed from the document. Terms
in a document are assigned their using Equation 9:

TF.IDF .= TF, - log (%) )
Normalized Pointwise Mutual Information Features Selection

The mutual information feature selection measures the common
information that is found between the terms and the labels (Kermani,
et al., 2019; Lim et al., 2017). The common information MI (¢, ¢) is
found in between the class ¢, while the term ¢ is distinct on the level of
co-occurrence between a feature ﬁ and a class c; (Li et al., 2017; Lim
et al., 2017). In this work, the NPMI feature selection method was
adopted to select features for each class according to co-occurrence
measure between a feature f; and ¢, a class. NPMI between the feature
and its classes (Lim et al., 2017) is calculated using Equations 10 and
11:

NPMI (class = ¢, f) = el (10)

%, PMI(c,f)

_ —1; p(e,f)
PMI (class = c,,f)) = lin — 2% (11)
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Multilabel Classification Models

For evaluation, two multilabel learning models, namely (i) chain of
classifier (CC) based on a binary relevance method, and (ii) AdaBoost.
MH, were adopted. These approaches were selected because they are
considered as the state-of-the-art multilabel classification algorithms
and often used in the works of imbalanced data (Al-Salemi, et al.,
2018; Pant et al., 2018; Taha & Tiun, 2016).

Chain Classifiers Based on Binary Relevance Method

A combination of multiple classifiers to solve a single task is called
chained classifiers (CC). The classifiers can be trained independently
by different datasets (Taha & Tiun, 2016). This work utilized the
proven binary classifiers, i.e., Naive Bayes (NB) classifier, k-nearest
neighbor (KNN) classifier, and SVM (Mironczuk & Protasiewicz,
2018).

AdaBoost. MH.

AdaBoost. MH constructs several weak classifiers iteratively and
subsequently groups them into a final classifier that can estimate the
multiple labels for a particular instance. Through integration and
training, a boosting algorithm transfers a weak classifier to a strong
one, which is what the AdaBoost algorithm does as an adaptive
booster. The AdaBoost algorithm is capable of adjusting the weight
distribution of the training samples adaptively and selecting the best
weak classifier out of the sample weight distribution consistently to
integrate all the weak classifiers and vote by a given weight to build
a robust classifier. AdaBoost.MH is a multilabel version of AdaBoost
algorithm (Al-Salemi et al., 2018; Pant et al., 2018).

Evaluation Measurements

The performance of these classification methods is measured
by classifying the experimental results into four groups using
Equations 5, 6, and 7, respectively. The first group is true positive
(TP), entailing correctly assigned documents. The second group
is false positive (FP), consisting of falsely assigned documents.
The third is false negative (FN), as the set of documents that
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were not incorrectly assigned to the class. Finally, the fourth
is true negative (TN), as the set of documents that were not
correctly assigned to the class. Besides, this study adopted three
multilabel evaluation measurements that are commonly used in
multilabel classification (Sharef et al., 2014; Taha et al., 2020;
Taha & Tiun, 2016), which can be referred to in Equations 12,
13, and 14:

i.  Average precision metric,c, M_PRECISION, evaluates the
proportion of the correctly predicted relevant, as shown in
Equation 12:

TR

d
M_PRECISION = ZW (12)
=1 1 1

ii.  Average recall metric, M-RECALL, calculates the proportion
of the correctly predicted relevant (true) labels that were
correctly identified, as shown in Equation 13:

_y_Th
M_RECALL = Zm (13)

iii.  Average F-measure metric, is the balance mean of both M _
PRECISION and M_RECALL, as shown in Equation 14:

(14)

a
M. = (B? + 1)M_Precision X M_Recall
Fp Z B2M_Precision + M_Recall

=1

RESULTS AND DISCUSSION

This study evaluated the strengths of the proposed ML-OUSCA
algorithm in the multilabel text classification context, in which
AdaBoost.MH and CC were used as the classifiers for multilabel text
classification. Main experiments involving K-SMOTE, KNN-US, and
ML-OUSCA had been carried out using the framework of Figure 1.
In addition, a five-fold cross-validation was utilized to evaluate all the
experiments.
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Dataset

As described in Table 1, the Bibtex, Enron, and Reuters-21578 corpus
datasets, which are publicly available multilabel text classification
domains, were used. Table 1 shows the number of instances, number
of attributes, number of labels, cardinality, density, diversity, and
average imbalance ratio per label (avgIR). Cardinality measured the
average number of classes for each instance, whereas density entailed
cardinality divided by the number of labels. Diversity involved the
percentage of class sets present in the dataset divided by the number
of possible label sets. The avgIR measured the average degree of
imbalance of all classes. Therefore, the greater the avgIR, the greater
the imbalance of the dataset.

Table 1

Summary of the Multilabel Text Classification Standard Data

In- Attri- Cardi- Den- Diver-

Dataset stances  butes Classes nality sity sity aveglR
Bibtex 7395 1836 159 2.402  0.015 0.386 12.498
Enron 1702 1001 53 3.378  0.064 0.442 73.953

Reuters-21578 6000 500 103 1462 0.014 0.135 54.081

Results

This study conducted two kinds of experiments using AdaBoost and
CC classifiers for evaluation. The first experiment was conducted
with baseline models (K-SMOTE and KNN-US) and the proposed
ML-OUSCA method using AdaBoost for evaluation.

The second experiment employed the same settings and datasets that
were used in the first experiment, and CC was applied instead of
AdaBoost. The experiments were categorized based on the usage of
AdaBoost and CC. Each experiment had three resampling methods,
which were K-SMOTE, KNN-US, and ML-OUSCA.

NPMI was used as a feature selection method with feature sizes
ranging from 250 to 2250 and with a constant increase of 250 each
time. Tables 2, 3, and 4 show the selected features (labeled feature
selection set) for each dataset using both classification methods.
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Table 2 describes the results of using K-means SMOTE as the over-
sampling method, and Table 3 shows the results of using KNN-US as
the under-sampling method. Table 4 presents the ML-OUSCA results.

Table 2

Performance (Average F-measure) of Over-sampling Algorithm:
K-means SMOTE on CC and AdaBoost

Bibtex dataset Enron dataset Reuters-21578

dataset
sell;ec?itgrrlese " AdaBoost CC  AdaBoost CC  AdaBoost CC
250 74.39 75.81 72.57 71.36 69.98 69.85
500 77.99 75.78 74.28 68.52 71.35 7191
750 78.76 74.31 74.76 72.82 74.68 68.95
1000 80.9 74.2 74.79 72.51 73.11 69.42
1250 81.46 75.2 76.33 72.88 77.23 70.74
1500 80.08 77.61 75.15 73.56 76.34 71.19
1750 80.74 79.35 75.63 73.56 70.2 72.74
2000 78.56 76.15 76.71 72.65 76.9 71.04
2250 80.72 77.79 73.72 71.78 74.61 71.46
Table 3

Performance (Average F-measure) of Under-sampling Algorithm:
KNN-US on CC and AdaBoost

Bibtex dataset Enron dataset Reuters-21578

dataset
sell:: fzilit:;eset AdaBoost CC  AdaBoost CC  AdaBoost CC
250 79.95 72.99 71.07 66.16 72.55 73.98
500 75.98 75.39 73.86 73.78 76.96 80.74
750 78.65 78.45 74.57 73.48 77.99 77.43
1000 80.67 84.74 75.9 7291 81.95 79.06
1250 75.64 76.97 71.59 73.63 83.65 77.07
1500 82.36 82.81 72.35 73.61 79.76 79.35
1750 82.87 80.59 72.89 74.08 79.77 79.6
2000 84.41 77.83 74.8 76.32 77.46 79.19
2250 82 76.73 77.68 80.96 81.05 77.95
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Table 4
Performance (Average F-measure) of the Proposed ML-OUSCA on
CC and AdaBoost. MH
Bibtex Dataset Enron Dataset Reuters-21578
Dataset
Fea'tu e AdaBoost CC  AdaBoost CC  AdaBoost CC
selection set
250 78.2 81.92 82.39 79 78.13 77.17
500 82.72 815 83.02 76.8 79.21 80.86
750 83.57 78.42 83.19 79.72 85.25 76.16
1000 86.84 77.6 83.86 79.77 82.95 78.97
1250 85.45 79.56 84.72 82.6 85.45 77.63
1500 84.21 82.95 82.78 81.6 84.71 79.18
1750 86.05 83.88 84.08 81.04 80.5 81.61
2000 84.51 81.32 86.17 81.13 86.07 78.68
2250 85.03 81.71 84.05 78.69 84.12 79.91
Figure 2

Performance of ML-OUSCA, KNN-US and K-means SMOTE on the
Multilabel Text Classification Problem (Applied with AdaBoost and
CC) using Full Size of Datasets

BK-Means SMOTE ®KNN-US ®EML-OUSCA

Performance

90

=

AdaBoost

m K-Means SMOTE 81.46

m KNN-US
uML-OUSCA

84.41
86.84

Bibtex
79.35
84.74
83.88

AdaBoost

76.71
77.68
86.17

Enron
73.56
80.96

82.6

Average F-measure

AdaBoost

80
| | ‘l |

| I I
65

Reuters-21578

7723
83.65
86.07

72.74
80.74
81.61
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The results shown in Tables 2, 3, 4, and 5 are summaries of using the
best sets of features for each classification method on all the datasets.
Table 5 categorizes the experiment into evaluation models (AdaBoost
and CC). Each experiment had three resampling methods (labeled K-
means SMOTE, KNN-US, and ML-OUSCA) applied to each of the
described datasets in Table 1.

Table 5

Summary of K- means SMOTE, KNN-US, and ML-OUSCA Best
Results Given in Tables 2, 3, and 4.

Clas- . FS sets .
sification Resampling Bibtex/ Enron/ Bibtex = Enron  Reuters
method Dataset Dataset Dataset
method Reuters
K- means
SMOTE 1250/ 2000/ 1750 81.46 76.71 77.23
AdaBoost o \\.us 2000/2550/ 1250  84.41  77.68  83.65
ML-OUSCA  1000/2000/1750  86.84 86.17 86.07
K- means
SMOTE 1750/ 1500/ 1750 79.35 73.56 72.74
cc KNN-US 1000/ 2250/ 500 84.74 80.96 80.74

ML-OUSCA  1750/1500/1750  83.88 82.6 81.61

DISCUSSION

The obtained results are summarized in Figure 2, presenting the effect of
the proposed ML-OUSCA method on the multilabel text classification
models based on all the datasets. It compared the classification
accuracy of ML-OUSCA and the baseline methods, namely KNN-
US and K-means SMOTE. The results also demonstrated that the
multilabel text classification models could be improved further if the
inherited imbalance problem was solved.

The results obtained by ML-OUSCA with AdaBoost. MH was stable
(consistently high) regardless ofthe imbalance problem. Asseen in Figure
2, though the avgIR value of the Enron dataset was more than 70, ML-
OUSCA obtained F-measure of 86.17 percent using AdaBoost and 82.6
percent using CC, respectively. Therefore, the proposed ML-OUSCA
method was capable of handling imbalanced text problem, even with
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high diversity in the size of imbalanced data (i.e., large value of avgIR).
Figure 2 shows that ML-OUSCA significantly outperformed
the other baseline sampling methods on all the multilabel text
classification models (AdaBoost. MH and CC). Thus, to verify
whether the above observations were statistically significant, a
paired t-test was carried out involving the attained results of the
proposed method and the two baseline methods on all datasets.
First, the t-test result obtained between the proposed ML-OUSCA
and baseline method KNN-US was p = 0.000388. Second, the
t-test between results obtained by the proposed ML-OUSCA
and baseline method K-means SMOTE was p = 0.009999.
However, in order to conclude the t-test, a significance level of
0.05 was employed in this study. Based on the archived p values,
it can be concluded that the results of the proposed method were
significantly better than those of the baseline methods.

In analyzing the cause for these results, it is believed that KNN-
US might increase the likelihood of overfitting, whereas K-means
SMOTE method might lead to overgeneralization due to disregarding
the majority class instances. Therefore, ML-OUSCA could provide
an effective solution for the problem of classifying the imbalanced
dataset to overcome several limitations of the baseline methods, such
as losing important information and adding trivial information. The
proposed method drew a new training set by over-sampling small
size classes and under-sampling big size classes according to training
examples by combining and exploiting the power of over-sampling,
under-sampling, and non-sampling methods. The results showed
that the classification performances of ML-OUSCA significantly
outperformed the other baseline sampling methods in all datasets.

Besides, with the consistently higher results of AdaBoost.MH as
compared to CC in all of the experiments (see Table 5) across all the
datasets, AdaBoost.MH should be chosen as the ensemble classifier.
This is because the AdaBoost.MH model aims to reduce the number
of misclassified labels. It works by setting the weights to the training
samplesandclassifiersinordertoensuretheaccuracyoftheclassification.

In other words, it can be concluded that for the best model for

multilabel text classification, given the choice of baseline resampling
and the proposed ML-OUSCA method to tackle imbalanced dataset
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and ensemble classifiers of AdaBoost.MH and CC, one should choose
the proposed ML-OUSCA with AdaBoost.MH as the classifier.

CONCLUSION

This study presented a new method, ML-OUSCA, to solve the class
imbalance problem in multilabel classification. Instead of using all
training instances, the proposed method constructed a new training set
by using over-sampling on the minority classes, and under-sampling
on the majority classes. Over-sampling and under-sampling were used
to avoid the curse of class imbalance problem, a common problem
in a majority of large-scale multilabel classification problems. The
proposed ML-OUSCA was applied on well-known multilabel text
classification datasets, namely Reuters-21578, Bibtex, and Enron. The
results indicated the superiority of the proposed ML-OUSCA method
as opposed to the baseline methods identified in the literature. Based
on the results, the study concludes that combining multilabel over-
sampling and under-sampling can help to achieve higher classification
accuracy than using any of the above methods isolation.
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