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ABSTRACT

Image segmentation can be defined as partitioning an image that
contains multiple segments of meaningful parts for further processing.
Global segmentation is concerned with segmenting the whole object
of an observed image. Meanwhile, the selective segmentation model
is focused on segmenting a specific object required to be extracted.
The Convex Distance Selective Segmentation (CDSS) model,
which uses the Euclidean distance function as the fitting term, was
proposed in 2015. However, the Euclidean distance function takes
time to compute. This paper proposed the reformulation of the
CDSS minimization problem by changing the fitting term with three
popular distance functions, namely Chessboard, City Block, and
Quasi-Euclidean. The proposed models were CDSS,,;;, CDSSyzp
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and CDSS,.,; which applied the Chessboard, City Block, and
Quasi-Euclidean distance functions, respectively. In this study, the
Euler-Lagrange (EL) equations of the proposed models were derived
and solved using the Additive Operator Splitting method. Then,
MATLAB coding was developed to implement the proposed models.
The accuracy of the segmented image was evaluated using the Jaccard
and Dice Similarity Coefficients. The execution time was recorded
to measure the efficiency of the models. Numerical results showed
that the proposed CDSS,,,,, model based on the Chessboard distance
function could segment specific objects successfully for all grayscale
images with the fastest execution time as compared to other models.

Keywords: Active contour, convex distance selective segmentation,
convex functional, selective variational image segmentation.

INTRODUCTION

Image segmentation is a procedure of dividing a digital image that
is comprised of common features and properties and shares certain
characteristics into multiple segments (Kumar et al., 2014). Image
segmentation is necessary to analyze and segmentize an image into
various parts that may be useful for basic applications such as in
the fields of robotics, image analysis, medical diagnosis, and object
detection (Saini & Arora, 2014). Two segmentation techniques are
available, i.e., based on discontinuity and similarity (Saini & Arora,
2014).

According to Zuva et al. (2011), the discontinuity property of
pixel-based segmentation methods is classified as edge-based
techniques. Generally, edge detection techniques are used to find
discontinuities in a gray level image. The techniques that are
useful for shape boundary recognition (Othman et al., 2016) can be
implemented using edge detection operators, such as Prewitt, Sobel,
Roberts, Canny, and Test operators (Saini & Arora, 2014).

Meanwhile, the segmentation method based on similarity criteria is
considered as a region-based technique. It divides an entire image into
sub-regions or clusters, and similar or homogeneous areas of connected
pixels. Each pixel in a region can share similar characteristics such as
color, intensity, or texture. If a similarity property is met, the pixel can
be designated as one or more of its neighbors in the cluster, resulting

96



Journal of ICT, 21, No. 1 (January) 2022, pp: 95—116

in fewer regions and a bigger image (Khan & Ravi, 2013). Several
similarity-based techniques that are commonly used are simple
intensity thresholding (Hadhoud et al., 2005), watershed approaches
(Beucher, 1990), clustering-based segmentation (Shihab, 2000), and
variational methods (Jumaat & Chen, 2020).

The discontinuity approaches associated with edge-based techniques
are low-level segmentation techniques that may incorrectly identify
the region or boundary of an object due to the distraction of noise
in an image (Mclnerny & Terzopoulos, 1996). Meanwhile, of all the
similarity techniques mentioned earlier, the variational methods have
been proven to be very efficient for image segmentation as compared
to other models (Jumaat & Chen, 2017). Therefore, based on these
facts, this research focuses on variational approaches to segment
images.

Several variational methods have been proven to be efficient
with different properties of a set of images and offer high-quality
processing capabilities for imaging (Dobrosotskaya & Weihong,
2017; Kaur & Kaur, 2014; Khan, 2014). According to Spencer
and Chen (2015), variational-based approaches are connected to
stochastic-based approaches that analyze the observed original image
in the discrete form of a continuous domain. Next, an appropriate
minimizing functional problem related to original image processing
problems needs to be solved. According to Yearwood (2018), to
obtain minimum or maximum optimality, variational methods use
the calculus of variations to optimize the cost function. The methods
introduced by Kass et al. (1988), Mumford and Shah (1989), Perona
and Malik (1990), Caselles et al. (1997), Chan and Vese (2001), Gout
et al. (2005), Chan et al. (2006), Rada and Chen (2011), Brown et
al. (2012), Getreuer (2012), Spencer and Chen (2015), Bastan et al.
(2017), Jumaat and Chen (2019), and Burrows et al. (2020), as well as
other variational methods, were proposed to improve the efficiency of
segmentation results.

Global and selective segmentation methods are two different
approaches used in variational image segmentation. The methods
concerned with the segmentation of all contour objects in observed
images are classified as the global segmentation approach.
Interestingly, the models proposed by Mumford and Shah (1989),
Chan and Vese (2001), Gout et al. (2005), Li et al. (2011), Yang and
Wu (2012), Mandal et al. (2016), and Wei et al. (2017) are examples
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of the global segmentation model. However, according to Rada and
Chen (2013), the global segmentation techniques cannot be applied
to extract only a specific object in a given image. To do so, a more
appropriate approach to accomplish the task is by using selective
segmentation techniques.

The selective segmentation is concerned with the segmentation of
particular regions and features of the observed image (Ali et al.,
2018). Some effective selective models have been proposed such as
by Badshah and Chen (2010), Li et al. (2011), Rada and Chen (2013),
and the Convex Distance Selective Segmentation (CDSS) model by
Spencer and Chen (2015).

The numerical experiment conducted by Spencer and Chen (2015)
demonstrated that the CDSS model performed better than other
existing models. In addition, the CDSS model is effective, as the
convexity could find the global minimizer and improve the reliability
of the solution (Jumaat & Chen, 2019). The CDSS model uses the
Euclidean distance function in its functional minimization. According
to Lee and Horng (1996), finding the Euclidean distance transform is
time-consuming.

The distance functions commonly used are Euclidean, City Block,
and Chessboard (Chen et al., 2004). The Euclidean distance between
two pixels is a simple straight-line distance, and the Euclidean norm is
used to evaluate it (Felzenszwalb & Huttenlocher, 2012). City Block,
also known as Manhattan distance, measures the path between four
connected pixels in a neighborhood. This is a fundamental operation
in computer vision, pattern recognition, and robotics.

Meanwhile, the Chessboard distance, also known as the Chebyshev
distance, calculates the path between pixels using eight connected
neighbors. The distance is defined on a vector space as the maximum
differences of two vectors in any coordinate dimension. On the other
hand, the total Euclidean distance along the vertical, horizontal, and
diagonal line segments is measured by the Quasi-Euclidean metric.

Chen et al. (2004) demonstrated that different distance transforms
produce different computation and segmentation results. Based on the
watershed segmentation results, the Euclidean distance transform and
City block distance transform performed poorly as compared to the
Chessboard distance transform. Furthermore, the errors produced by
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the Euclidean and City Block distance functions are higher than those
generated by the Chessboard method in detecting objects in a given
image.

Since the different distance transforms may yield different results in
image segmentation, this study is interested in investigating the effect
of modifying the CDSS model with different distance transforms.
Three distance transforms are used in this study, i.e., Chessboard, City
Block, and Quasi-Euclidean. By this modification, a certain degree of
improvement is expected in the computational speed and accuracy of
the segmentation results.

The next part of this paper provides a brief review of the study, which
is then followed by the formulations of the proposed convex and
selective models. The experimental results of existing and proposed
models are then presented.

REVIEW ON RELATED MODELS

Based on previous research, several variational-based segmentation
models for both global and selective segmentations exist. The two
existing segmentation models related to the new proposed model are
discussed below, i.e., the Chan and Vese (2001) and Spencer and Chen
(2015) models.

The Chan and Vese (2001) Model

The Active Contour Without Edges variational mathematical
formulation was developed by Chan and Vese (2001) for image
segmentation. The Chan and Vese (2001) model is abbreviated as the CV
model in this study. It was formulated based on the piecewise constant
two-phase functional introduced by Mumford and Shah (1989). An
image is assumed as z =z (x, y). In their model, the assumption made
was that image z was designed by two main regions. The unknown
contour, I, separated the regions. Inside the curve or contour I, the
region 2;was assumed to represent the specific object with the unknown
value, ¢1. Outside the curve I', the image intensity was approximated
by the unknown value c2in Q, =Q/€Q,. Then, using Q=Q, UQ,,
the CV model minimized the following Equation 1:

min {CV(F,cl,cz) =u length(l“)+/11j.Ql (z—¢) dxdy +2.ZJ.Qz (z-¢,) dxdy.} (1)

T.ep.0p
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Based on Equation 1, the unknown constants ¢ and ¢, are considered
as the approximately piecewise constant intensities of the mean values
of z inside and outside the variable contour I",. Meanwhile, parameters
4, A, and 4, ,which are non-negative parameters, represent the weights
for the regularizing term and fitting term, respectively. The level set
method was applied by following the idea introduced by Osher et al.
(1988). The regularized functions A and & are defined by the following
Equation 2:

H(¢(x,y))=%[H%+%zsm(”¢/8)}
5(¢(x,y)) - %8[1+cos(ﬂ%ﬂ:

where € is a constant used to avoid the values of H(¢(x,y)) and
o (¢(x, y)) tends to be zero, leading to the failure of an object to
be extracted if it is far from the initial contour. Thus, Equation 1 is
modified as in the following Equation 3:

(¢.c1.00) = uf |VH (§) dxdy + X (z—¢ )} H (¢) dxdy
+ ﬂﬁJ.Q(Z_CZ )2 (1—H(¢))dxdy.

The function ¢ was fixed. Then, Equation 3 was minimized with
respect to ¢1 and c¢; that yield the following Equation 4:

& (¢)=[oz(x.2)H (¢(x.))dQ/ |, H (4(x.y))dQ
& = [z (6 2)(1=H (#(x.)))dQ) |, H ((x, )40

Fixingciand ¢z as constants in C V(¢, cl,cz) leads to the following
Equation 5 for ¢:

2)

4

V¢ 2 2 4.
mw)v.[wj—w(m(z—q) riae-e) <0 n

= =0 on 0Q.

where V ¢ represents the gradient of the level set function ¢ .Equation
5 is called as the Euler-Lagrange (EL) equation, which was solved
using a finite difference method.
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The Spencer and Chen (2015) Model

A new formulation for the selective model was developed by Spencer and
Chen (2015), termed the Distance Selective Segmentation (DSS) model.
This two-phase model was based on the piecewise constant functional
introduced by Chan and Vese (2001). Let be az (x, y) grayscale image.
The marker set was given as A4 = {wl. =(x,y)e,1<i<n} with
n,(=3) marker points. The polygon R would be constructed using set
A that linked up the markers. In the model, the normalized Euclidean
distance P, ( X, y)of each point ( X, y) e () from its nearest point in the
polygon, made up of gxp ,¥, ) € P,constructed from user input set, 4
was introduced. The function P, ( X, y) is defined by the following
Equation 6:

Ry (x,y)
P =Y 77 (6)
1) =R

2 2 ,
where R, (x,y) = \/(x —X, ) + (y Y, ) .Then, the DSS formulation
is given as the following Equation 7:

DSS(F,Cl,cz):,u|1“|+0J-m(r)Pd(x,y)dQ -
], (=4 ) dQ+2 (776 ) dQ.

In the level set representation, Equation 7 can be written as the
following Equation 8:

min {DSS(¢,¢;,c,) = ] 5(¢)|V4| d2+6[_H(¢)P, dO

$.c1.02

FA[ H(9)(z¢) dQ+a] (1-H(9))(z¢,) dQ},

for non-negative parameters &, . and 4. Here, ¢ is the area parameter
that controls the weight of the instance fitting term, the parameter 4
controls the region fitting term, while the parameter # controls the
length of the generated curve. Normally, # =4 =1.1t was suggested that
the chosen value of € was different for each image and the value
depended on the targeted object. In practice, a small was 6 needed
for a simple image, while a large @ was suitable for a low contrast
image close to the neighboring area. The convex formulation was
introduced by reformulating Equation 8 by taking the adjustment
about the Heaviside function as H(¢) — u €[0,1] . Thus, the new function
was known as the Convex Distance Selective Segmentation (CDSS),
defined as an unconstrained minimization problem as in the following
Equation 9:

(®)
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min{CDSS(u,c,,c,) =,uJ.| Vu|dQ+ _[m dQ +H_[Bjud§2 +aIv(u)dQ}. 9)
" Q Q Q Q

where r=(z-¢,)’ —(z—c,)*. The regularized version of penalty function,
v, is defined by the following Equation 10:

v(u):H(J(zu—1)2+g—1)[\/(2u—1)2+g—1} (10)

where H(x)= 1(1 + garctan(i
2 T £

D Then, the following Euler-Lagrange

partial differential equation (PDE) for u« is defined by the following

Equation 11: Vu
,uV.( v )—/Ir—HR,—av’:O inQ
S | Vu| (11)
a—u: on 0Q)
n

Here, the parameter o is a weightage parameter for the penalty term,

v. The CDSS functional problem used one of the most common
distance functions, the Euclidean distance function, in its function.
The Euler-Lagrange Equation 11 was solved by using the Additive
Operator Splitting (AOS,) method introduced by Spencer and Chen
in 2015.

THE PROPOSED MODELS

This research aimed to modify the CDSS model by substituting the
distance function, P (x,y), with different distance functions, i.e.,
Chessboard, City Block, and Quasi-Euclidean, which is generally in
the form of the following Equation 12:

min CDSS, ,,, (i,¢,.c,) . (12)

A given image z = z(x, y)is indicated with image domain Q <0 *. Assume
the availability of n 1(23) pomts inside the targeted object that form a
marker set B= {w (x,y)eQl<i< ”1} that defines a polygon. The

geometrical points in B defined an initial polygonal contour and
polygon P would be constructed by connecting the markers using set B.
The function P.(x, y) was denoted as the Chessboard distance, B, (x, y)
as the City Block distance, and £}, (x, y)as the Quasi-Euclidean of each
point(x, y) € £ from its nearest point (x > yp) € P,constructed from
user input set B. The distance functions F.(x,y), P.,(x,y), and

F,;(x,y) are defined by the following Equations 13, 14, and 15,
respectlvely
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i) Chessboard distance function

P.(x,y)=max(|x —x, || %, -, | (13)
i1) City Block distance function,
PCB('x’y):lxl_'xp |a|y1_yp| (14)
iii) Quasi-Euclidean distance function,
B :{ e L Y e
(\/5—1) X, —x, |+, =¥y, otherwise.

Based on the general form of the modified model in Equation 12
and the related distance functions above, this study proposed three
new variants of modified CDSS concerning three different distance
functions as follows:

1) let CDSSygw = CDSSyew1, Which represents a modified CDSS by
using the Chessboard distance function. The first modified model
is defined by the following Equation 16:

min{CDSS, (14,6, ¢,) = | Vu | dQ+ A ru dQ +6[ Pud +a[v(w)dQ} (16)
Q Q Q Q

i1) let CDSSygw = CDSSypw2.Which is a modified CDSS by using the City
Block distance function. The second modified model is defined by the
following Equation 17:

min{CDSS ., (4,6;,,) = | Vi | dQ+ A[ ru dQ+6] PyudQ +a [v(w)dQ} (17)
" Q Q Q Q

iii)let CDSSygw = CDSSnews- The third modified model is defined by the
following Equation 18:

min{CDSS, (1, 6,,¢;) = 1 [IVuldQ+ A[ru dQ+6] PyudQ +af v)dQ (1)
Q Q Q Q

which represents a modified CDSS using the Quasi-Euclidean distance
function. Here, r=(z-¢)* - (z—¢,)*. The function v(#) is defined similar
to Equation 10.

The modified models above were minimized using the Calculus of
Variation by deriving their Euler-Lagrange PDE. A short derivation of
the Euler-Lagrange equation with respect to for this study is shown
below. The derivation of the Euler-Lagrange equation for Equation 16
is only demonstrated, as the derivations of Equations 17 and 18 are
similar.
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From Equation 16, denote 1/, (1) = |Vu| = uf +u§ = (“f +u§)l/2 ,

L,(u)=ru, I,(u)=Fu,and I,(u)=v(u).

Evidently, 1, u+2p|=|V(u+29)| = [(u, +24,)" +(u, +24,)’,
where ¢ is areal parameter that is restricted to some intervals around

0 and ¢ is a test function. The derivative for I, with respectto & is
given as:

%‘V(u +59)| = %\/(ux +80.) +(u, +89,)’

L3+ 4T [200, 4500, + 2, + 3,0,

Atz =0, i\V(u +&¢)| = .9, +uy¢ly = VY9 From this point, the Taylor
de [ Vo
x y
expansion was applied. For example, consider the function /(@)=
(x+ac))® +(y+acy)?) where p # 0. The derivative with respect to a is:

%(f(a)) = f'(a) =p[(x-4—ac1)2 +(y+acz)2]”71 (2(x+ac1)c1 +2(y+acz)cz)
(2xcy +2yc,)

and at a=0 gives /'(0)=(2(x)¢; +2(y)c,) = p L2 2

-Then, the Taylor

expansion at a=0 is defined by the following Equation 19:

(2xc, +2yc,)

f@=fO)+f(@a+0@)=(x"+y") + p—-F'—F12
(x"+y7)

a+0(a®). (19)

Therefore, by applying the Taylor expansion in Equation 19 at & =0,
the term 7, can be extended as follows:

VuVé « o
|Vul

Next, compute the derivative for 7, with respect to ¢ as follows:

Lju+ 2| =|V(u+89)| = \[(u, +20,)" +(u, +29,)" =|Vu|+

%(u+§¢)r:r¢,

At z=0, %(r(u +&¢) =r¢. Therefore, by applying the Taylor series
&

expansion in Equation 19 at & =0, I, becomes:

r(u+2¢) =ru+rge + O(g°)
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For the function [, the derivative with respect to ¢ is as follows:

afl—g (u+ep)P.=P.¢.

d _
Ate =0, e (P-(u+ @) = F. - ¢ After applying the Taylor expansion
g

in Equation 19 at &€ =0, /; becomes:
P.(u+2p) = Pu+ P.ge +O(")
Similarly, for function /, ,the derivative with respect to € is given as:

At ) =v(u + )4
de

_ d _
Atg =0, 27 (W(u+&¢)=V'(u).¢. Therefore, by applying the Taylor
g

expansion in Equation 19 & =0, 1, at becomes:
v(u+2@) = v(u) +v'(u)ge + O(2?)

Now, compute the first variation of the functional CDSSy g1 of Equation
16 with respect to u. With any test function ¢ the first variation for

T(u)=1,(u)+1,(u)+1,(u)+1,(u)is given as:

g

a[Pu+P¢g+0(g) Pt |+ | v(u)+V'(w)gz + O(F) —v(u) |

J. [Vu Vu. ¢7+O(5) Vu:|+ﬂ[ru+r¢g+0(5) ru}

This is simplified as:
i I(u+&p)~I(u) _

£

[ Hvé ‘¢+0(g )}z[mm(g ]+of c¢+O(SZ)]W[V'(“)WO@Z)}}Q

=0. Hence,

Consequently, for any ¢, hmw
g0 s

i I(u+24)—I(u) N {ﬂ VuVe

= +Arg+OP.¢+ av'(u)(/ﬁ}dQ =0
& ‘Vu‘

Using Green'’s first identity as the following relation:

[ Véwda=[ gw.nds-| ¢v.wdo.
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. -  Vu
and by taking o= Zk

Vu
jv¢wdQ j‘ VgdQ Lﬂ¢‘v‘ s—jngqﬁdg

the following is obtained:

Therefore, by setting the boundary condition (Neumann Type)Vu.p=0:

j{ ] ¢+/1r¢+t9P¢+av(u)¢}dQ 0

The integrand is zero if:

V- YU s g+ OP.G+av' (u)h =0

iz
Vu ,
=>¢|-uV-—+Ar+0FP. +av'(u) |=0
{ Vel }

Therefore, for all test functions ¢ the Euler-Lagrange PDE with
Neumann boundary condition for the proposed €DSSygzw; model in
Equation 16 is defined by the following Equation 20:

Vu von

By similar processes, the Euler-Lagrange PDE for CDSSygy, and
CDSSygws is defined by Equations 21 and 22 as follows:

—ﬂv'%+ﬂr+6PCB rav'(u)=0 Q1)
u

Vu ' 22

—,uv-m+2,r+(9PQE+av(u):0 (22)
u

Then, the improved semi-implicit Additive Operator Splitting (AOS,)
scheme as proposed by Spencer and Chen (2015) was employed to
solve Equations 20, 21, and 22. The details of the scheme are well
explained in Spencer and Chen (2015).

Steps of the Algorithm for the Proposed Models

This algorithm shows the steps involved to implement the new
proposed models to compute the solution using MATLAB software.
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Algorithm 1: The CDSS;,,, algorithm

Step 1. The ‘imread’ command was used in MATLAB to input the
grayscale images.

Step 2. The parameter values of o, u, €, and A were set, and the
distance function of P(x,y) was calculated using the ‘bwdist’
command for minimization problem CDSS,,,,,.

Step 3. The parameter u(®),n = 0 was initialized.

Step 4. For iter = 1to maximum iterations, maxit or “

Calculate cf”) (u™=D) and Cé") (u-1)
Caleulute 7" = 2((z=¢/ ) ~(z=¢t) }+ 07

) _ ||,
Set o =\,

s
Calculate f" =Ar+6P. + av .

Update toy" <~ min, CDSS,,, (c”,c!",a™)to w+Dusing AOS,
(Spencer & Chen, 2015).

end for

Step 5. u” <« u". u"represents the final solution.
The stopping criteria used for this model was set as the value
of tolerance, tol = 1 x 10~%. The program would stop when

<tol or when the program reached the maximum

u

iterations (maxit), which was 5,000 iterations. This process was
repeated by applying another two different distance methods
Py(x,y), for CDSS, ., and P ,(x,y) for CDSS, .

EXPERIMENTAL RESULTS

In these experiments, the performance of the existing CDSS model
was compared with CDSS,,,,, CDSS,;, and CDSS,,.,,; in segmenting
a targeted object in an image. All algorithms were implemented in
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MATLAB R2016a. The CPU processor used was Intel® Core TM-i5-
7200U CPU @ 2.50GHz with 4 GB installed memory (RAM). The
parameters were fixedat ¢ = 1072, = 2,1 =0.01,u = 1,5 = 1074,
€ = 0.01, tol = 10~*and maxit = 5000for all experiments, and the
adjustment for the value & was made depending on the given images.
Basically, the value of @ was small for a simple image, while a larger
value of @ was needed for the real image or an image with noise. For

the accuracy of the segmentation result, the performance of all models
was evaluated by using the Jaccard Similarity Coefficient (JSC) and
Dice Similarity Coefficient (DSC) in the range of [0, 1] as follows:

c=150%1 " pgeog 508
15,08, 1S, [+15.]

where S, is the segmented domain (), set and S, is the true set of ().
The test images used in this paper are listed in Figure 1.

Figure 1

Segmentation Test Images.

(a) Problem 1 (b) Problem 2 (c) Problem 3

Problem 1 is a real image while Problems 2 and 3 are synthetic images.
The real image and benchmark for Problem 1 was obtained from
Li et al. (2013). Meanwhile, Problems 2 and 3 were self-generated
synthetic images. It was remarked that Problem 2 was a synthetic
image without noise, while Problem 3 was a synthetic image with
noise. All the test images had a size of 128 x 128 pixels. This study
compared the computational speed and accuracy of segmentation for
the CDSS model and the three modified models on all three problems.
For Problems 1 and 3, the parameter was used, while the value of
was used for Problem 2. Figure 2 exhibits the segmentation results of
each model for Problem 1.
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Figure 2

Segmentation of Problem 1 for CDSS, CDSS, .y, CDSS\py, and
CDSS s

e

(b) CDSSnew:

(c) CDSSxewz (d) CDSSzws

The results were in the form of curve representation (grayscale image
with red line) and binary representation (black and white). All models
could segment the targeted object successfully and achieve similar
segmentation quality, whereby the JSC and DSC values were 0.85 and
0.92, respectively. Figure 3 demonstrates the segmentation results of
each model for Problem 2.

Figure 3

Segmentation of Problem 2 for CDSS, CDSS, .y, CDSSypw» and
CDSS 5

(a) CDSS (b) CDSSnew:

(c) CDSSvew: (d) CDSSxews

In Problem 2, the targeted object was the pentagon. The red line
showed the segmentation curve while the black and white image
displayed the binary representation result. All models achieved
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similar segmentation quality in Problem 2 (JSC =1, DSC =1). Figure
4 exhibits the segmentation results of each model for Problem 3.

Figure 4

Segmentation of Problem 3 for CDSS, CDSS,.y, CDSS.py, and
CDSS s

(b) CDSSxew:

(c) CDSSnew: (d) CDSSxews

In Problem 3, the targeted object was the triangle. The grayscale image
with the red line showed the segmentation curve while the black and
white image demonstrated the result in binary form. The JSC values
forDSS, CDSSyngw1> CDSSnEw2, and CDSSygy s were 0.97, 0.99, 0.94,
and 0.96, respectively, while the DSC values for CDSS, CDSSygw1,
CDSSygw2, and CDSSygyswere 0.98, 0.99, 0.97, and 0.98, respectively.
Therefore, the CDSS,,,, model achieved the highest accuracy. The
JSC and DSC values for all the models in segmenting all the problems
are summarized in Figure 5.

Figure 5

Comparison of Segmentation Quality based on Values of JSC and
DSC for All Problems.
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According to Figure 5, all models achieved similar segmentation
quality in Problem 1 (JSC = 0.85, DSC = 0.92) and Problem 2 (JSC =
1, DSC =1). In Problem 3, the CDSS,,,,, model achieved the highest
accuracy (JSC = 0.99, DSC = 0.99) in segmenting targeted objects,
while the accuracy of segmentation results by other models showed
slight variations from one another. The computational or execution
time required to accomplish the segmentation task is demonstrated in
Figure 6.

Figure 6

Comparison of Computational Time for All Problems.
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From Figure 6, the CDSS,,,, model with the Chessboard distance
function was 11.24 percent faster than the existing model, CDSS in
segmenting Problem 1. In Problems 2 and 3, the CDSS,,,,, model
was 24.20 percent and 28.88 percent faster than the CDSS model,
respectively. In addition, the CDSS,,,, model had the fastest
computational speed in segmenting targeted objects as compared to
other models in all tested problems. Therefore, the findings of this
study indicate that the CDSS,,,,, model has the highest accuracy in
segmentation and possesses the fastest computational time.

CONCLUSION

This study focused on segmenting specific objects selectively for
grayscale images by using the selective segmentation technique.
Three new models were proposed in this study, i.e., CDSS,,,,
CDSS, s>, and CDSS, ., To minimize the functionals, the associated
Euler Lagrange PDE for each model was derived. Then, the equations
were solved using an Additive Operator Splitting (AOS,) scheme
proposed by Spencer and Chen (2015), computed in the MATLAB
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platform. The performance of each model was analyzed based on the
computational time and accuracy of segmentation results measured
in terms of JSC and DSC for each test problem. The accuracy of the
segmented images in Problems 1 and 2 was similar for all models.
Meanwhile, in Problem 3, the CDSS,,,,, model achieved the highest
accuracy in segmenting targeted objects as compared to the other
models.

The existing model, CDSS with Euclidean distance function, was
slower than CDSS, ., in terms of computational time. On the contrary,
CDSS, ., was faster than CDSS, ;,,, with the Quasi-Euclidean distance
function and the CDSS,,,, model with the City Block distance
function. Therefore, it can be concluded that the CDSS,,,, model
with Chessboard distance function achieved the best performance
with the fastest computational speed as compared to other models in
segmenting the grayscale images selectively.

The formulation of this modified CDSS can be extended in future
research to vector-valued images since these images contain richer
information and have better intensity. Moreover, the minimization
problem can be solved by using the multilevel method directly without
using a partial differential equation. Therefore, the solution might be
faster to be solved and might improve efficiency.
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